Derzeit werden Sensoren in den meisten Anwendungen manuell auf die Oberflächen von Bauteilen angebracht. Neben Sensoren auf der Bauteiloberfläche lassen sich durch das neu entwickelte Verfahren auch Sensoren direkt in die Bauteile integrieren. Dadurch können wichtige Kenndaten über die Belastung innerhalb des Bauteils gesammelt werden.
Die manuelle Applikation von Sensoren ist oft nicht präzise genug, schließlich arbeiten die Sensoren im µm-Bereich, um Vibrationen, Beschleunigungen oder kleinste Verformungen zu registrieren. Samuel Moritz Fink, Gruppenleiter Dünnschichtverfahren am Fraunhofer ILT: "Das manuelle Aufbringen von Sensoren ist in vielen Fällen zu ungenau und nicht reproduzierbar. Zudem fordern die Anwender zunehmend automatisierbare Prozesse."
Das Fraunhofer-Institut für Lasertechnik ILT stellt einen PKW-Querlenker mit additiv gefertigtem Sensor vor. "Der Kraftsensor, den wir auf den Querlenker gedruckt haben, ist inklusive Isolations- und Schutzschicht sowie Anschlüsse nicht einmal 200 µm dick", erklärt Fink. "Damit lassen sich die wirkenden Kräfte im Einsatz zu jedem beliebigen Zeitpunkt bestimmen." Diesen Prototyp haben die Fraunhofer-Forschenden für den Rennsport entwickelt. Der Sensor misst kontinuierlich die Kraftänderung etwa bei Kurvenfahrt und warnt vor Defekten, bevor sie entstehen.
"Der Kraftsensor registriert kleinste Risse, die auftreten, bevor sie zum Versagen des Bauteils führen", so der Gruppenleiter. Neben einem Kraftsensor lassen sich auch andere Sensoren aufbringen etwa zum Erfassen von Temperatur, Vibrationen oder Schall, Druck oder Beschleunigung, Licht, Spannung, aber auch für die Bestimmung unterschiedlicher Gase und Flüssigkeiten. Spezielle Kunststoffe für die Isolations- und Schutzschichten ertragen Temperaturen von bis zu 300 °C.
Das Anwendungsspektrum dieses Verfahrens ist immens, vor allem, weil es geeignete Echtzeitdaten für Predictive Maintenance liefert: "Damit lassen sich beispielsweise Batteriezellen einzeln überwachen, Wartungsintervalle bei Offshore Windkraftanlagen optimieren oder Prozesse im Maschinen- und Anlagenbau verbessern", so Fink weiter.
Eine weitere bemerkenswerte Innovation, die das Fraunhofer ILT vorstellt, ist die nahtlose Einbindung von Sensoren während des additiven Herstellungsprozesses. Mithilfe von 3D-Strukturdruckverfahren wie dem Laser Powder Bed Fusion (LPBF)-Verfahren können gedruckte Sensoren direkt in die Bauteile integriert werden, während sie entstehen.
Diese Technologie demonstrieren die Fraunhofer-Forschenden am Beispiel eines additiv gefertigten Fräskopfs. Der Strukturdruckprozess mittels LPBF wird unterbrochen, um Dehnungsmessstreifen mithilfe eines digitalen Funktionsdruckverfahrens und laserbasierter thermischer Nachbehandlung zu integrieren. Anschließend wird der Strukturdruckprozess fortgesetzt, um das intelligente Bauteil fertigzustellen.
Durch die Kombination von Struktur- und Funktionsdruck sowie laserbasierter Nachbehandlung lassen sich Bauteile mit integrierter Sensorik vollständig additiv herstellen. Dies ermöglicht nicht nur die präzise Platzierung von Sensoren für anspruchsvolle Zustandsanalysen, sondern auch den Schutz dieser Sensoren vor mechanischen Umwelteinflüssen.
"Die Geometrie der Sensoren kann je nach Bauteil individuell angepasst werden, und zukünftig sind sogar weitere Funktionselemente wie integrierte Heizer denkbar", sagt Samuel Fink. "Diese Technologie eröffnet vielfältige Anwendungsmöglichkeiten, von der Fertigung in den Bereichen Werkzeug- und Maschinenbau bis hin zur Automobilindustrie und darüber hinaus in den Sektoren Energie, Luft- und Raumfahrttechnik."
COMPAMED.de; Quelle: Fraunhofer-Institut für Lasertechnik ILT