Eine Möglichkeit, EKGs über einen langen Zeitraum aufzuzeichnen und so die Chance zu erhöhen, das Herzstolpern zu erkennen, bieten Wearables wie etwa Smartwatches, die der Patient am Handgelenk trägt. Doch damit die mobile Diagnose praktisch umsetzbar ist, müssen die aufgezeichneten EKG-Daten energieeffizient ausgewertet werden können. Das Problem: Die Algorithmen zur Auswertung der Patientendaten können sehr rechenintensiv sein, was einen hohen Energieverbrauch zur Folge hat. Die Laufzeit und damit die Zuverlässigkeit eines mobilen Systems ist aber von dessen Energieverbrauch abhängig. Für mobile Anwendungen hat deswegen die energieeffiziente Ausführung der Auswertungsalgorithmen auf der Hardware höchste Priorität.
Dies war Anlass für das Bundesministerium für Bildung und Forschung BMBF, den Pilotinnovationswettbewerb "Energieeffiziente KI-Systeme" zu starten. Nur wenn der Energieverbrauch heutiger Mikroelektronik gesenkt wird, schafft Künstliche Intelligenz (KI) Nutzen und hält Einzug in medizinische, industrielle und andere Anwendungen. Die Wettbewerbsaufgabe lautete, dass der KI-Chip mit einer Genauigkeit von mindestens 90 Prozent Vorhofflimmern erkennen soll, dies in Echtzeit klassifiziert und dabei so wenig wie möglich Energie verbraucht. Die Anzahl der Fehlalarme darf 20 Prozent nicht überschreiten. Für die Umsetzung der Aufgabe bekamen die teilnehmenden Teams 16 000 einzelne EKG-Aufnahmen von je zwei Minuten Länge von der Berliner Charité gestellt. 8000 der Aufnahmen waren von Patienten mit Vorhofflimmern, die restlichen 8000 von Gesunden. Sowohl das Fraunhofer IIS als auch das Fraunhofer ITWM belegten den ersten Platz, wenn auch in unterschiedlichen Kategorien und mit unterschiedlichen Ansätzen. Mit ihrem Preis konnten die Institute unter Beweis stellen, dass Fraunhofer beim Einsatz von KI und in der Mikroelektronik ganz vorne mitspielt in Deutschland.
Das Team des Fraunhofer IIS, geleitet von Dr. Marco Breiling, gewann gemeinsam mit den Forschenden der Friedrich-Alexander-Universität Erlangen-Nürnberg um Dr. Marc Reichenbach und Prof. Dietmar Fey in der Kategorie ASIC 130 Nanometer (englisch: Application-Specific Integrated Circuit, anwendungsspezifischer integrierter Schaltkreis) mit dem Projekt "Low-Power Low Memory Low-Cost EKG-Signalanalyse mit ML-Algorithmen – Lo3-ML". Das Fraunhofer ITWM gewann in Zusammenarbeit mit der Technischen Universität Kaiserslautern in der Kategorie FPGA (englisch: Field Programmable Gate Array, ein programmierbarer Logik-Schaltkreis) mit dem Projekt: "Holistischer Ansatz zur Optimierung von FPGA Architekturen für tiefe neuronale Netze via AutoML – Automatisches Maschinenlernen (HALF)". Mit ihren Siegen haben die beiden Fraunhofer-Institute die Chance erhalten, ihre Schaltungen und Tools mit jeweils einer Million Euro weiterzuentwickeln.
COMPAMED.de; Quelle: Fraunhofer Gesellschaft