Das berichtet ein Team aus der Marburger Physik in der aktuellen Ausgabe des Fachmagazins Advanced Functional Materials.
"Unsere Ergebnisse sind von großer Bedeutung für das wachsende Feld der organischen Elektronik, weil sie dazu beitragen können, die Effizienz von Bauelementen zu verbessern", erklärt der Physiker Professor Dr. Gregor Witte von der Philipps-Universität, der die Forschungsarbeiten leitete.
Organische Elektronik gilt als Technik der Zukunft: Ihre Bauteile lassen sich preisgünstig produzieren und erlauben neuartige Anwendungen, zum Beispiel Plastik-Verpackungen mit eingebauten Schaltkreisen.
Die Bauelemente der Organischen Elektronik beruhen auf halbleitenden aromatischen Molekülen, die ähnlich zu Biomolekülen und Kunststoffen sind. "Ein zentrales Problem besteht dabei oft in dem elektrischen Kontaktwiderstand, der sich an der Grenzfläche zwischen Metallelektroden und organischem Halbleiter ergibt", erläutert Witte.
Das Team verwendete eine bestimmte Klasse organischer Moleküle, um sie als extrem dünne Schicht auf einkristalline Gold- und Silber-Elektroden aufzutragen. Damit verfolgte die Forschungsgruppe das Ziel, die elektronischen Eigenschaften an den Grenzflächen der Elektroden gezielt zu verändern, so dass sie zu organischen Halbleitern passen.
Als Deckschicht oder "Contact Primer" wählten Witte und sein Team chemische Verbindungen aus der Gruppe der Phthalocyanine. "Diese kleeblattförmigen Moleküle sind sehr robust und werden bereits vielfältig als Farbstoff in Kunststoffen eingesetzt", legt Wittes Mitarbeiterin und Koautorin Dr. Alrun Aline Hauke dar.
Die Arbeitsgruppe schaffte es, die Verbindung als Monolage aufzutragen: Das ist eine Schicht, die nur aus einer einzigen Lage geordneter Moleküle besteht – "etwa ein millionstel Mal so dick wie ein menschliches Haar", wie Hauke sagt.
So dünn das Deckmaterial auch ist – wirkungsvoll ist es allemal, wie das Forschungsteam durch Messungen nachwies: Über die prozentuale Bedeckung der Elektroden durch die Contact Primer lässt sich die Energie-Barriere exakt einstellen, die Elektronen beim Übergang vom Metall in einen organischen Halbleiter überwinden müssen.