Bestimmte Aufgaben – etwa das Erkennen von Mustern und Sprache – erledigt ein menschliches Gehirn hocheffizient und benötigt dafür nur etwa ein Zehntausendstel der Energie eines konventionellen, sogenannten "von Neumann"-Computers. Einer der Gründe liegt in den strukturellen Unterschieden: In einer von-Neumann Architektur gibt es eine klare Trennung zwischen Speicher und Prozessor, was ständiges Verschieben großer Datenmengen erfordert. Das ist zeit- und energieaufwändig – der sogenannte von Neumann-Flaschenhals. Im Gehirn erfolgt die Rechenoperation direkt im Datenspeicher und die biologischen Synapsen übernehmen die Aufgaben von Speicher und Prozessor zugleich.
In Jülich arbeiten Wissenschaftler seit über 15 Jahren an speziellen Datenspeichern und Bauelementen, die ähnliche Eigenschaften aufweisen können wie die Synapsen im menschlichen Gehirn. Sogenannte memristive Speicherbauelemente, auch Memristoren genannt, gelten als äußerst schnell, energiesparend und lassen sich sehr gut bis in den Nanometerbereich miniaturisieren. Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, sondern lässt sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen, im Idealfall stufenlos. Gesteuert wird die Widerstandsänderung durch die Bewegung von Sauerstoff-Ionen. Bewegen diese sich aus der halbleitenden Metalloxidschicht heraus, so wird das Material leitfähiger und der elektrische Widerstand sinkt. Diese Widerstandsänderung kann man zur Speicherung von Informationen einsetzen.
Die Prozesse, die in den Zellen auftreten können, sind sehr komplex und variieren je nach Materialsystem. Drei Forscher des Jülicher Peter Grünberg Instituts – Prof. Regina Dittmann, Dr. Stephan Menzel und Prof. Rainer Waser – haben deshalb ihre Forschungsergebnisse in einem ausführlichen Reviewartikel zusammengetragen, "Nanoionic memristive phenomena in metal oxides: the valence change mechanism". Sie erklären detailliert die verschiedenen physikalischen und chemischen Effekte in den Memristoren und beleuchten den Einfluss dieser Effekte auf die Schalteigenschaften memristiver Zellen und deren Zuverlässigkeit.
"Wenn man die aktuellen Forschungsaktivitäten im Bereich neuromorpher Memristorschaltungen betrachtet, so basieren diese häufig auf empirischen Ansätzen der Materialoptimierung", so Rainer Waser, Direktor am Peter Grünberg Institut. "Wir haben uns das Ziel gesetzt, mit unserem Reviewartikel den Forschenden etwas in die Hand zu geben, um eine Erkenntnis-orientierte Materialoptimierung zu ermöglichen". Das Autorenteam hat zehn Jahre lang an dem etwa 200-seitigen Artikel gearbeitet und musste dabei naturgemäß immer wieder den Erkenntnisfortschritt mit einarbeiten.
"Die analoge Funktionsweise memristiver Zellen, die man für deren Einsatz als künstliche Synapsen benötigt, ist nicht der Normalfall. Üblicherweise kommt es zu plötzlichen Sprüngen des Widerstands, erzeugt durch die wechselseitige Verstärkung von Ionenbewegung und Joulscher Wärme", erläutert Regina Dittmann vom Peter Grünberg Institut. "In unserem Reviewartikel liefern wir den Forschenden das notwendige Verständnis, wie die Dynamik der Zellen so verändert werden kann, dass ein analoger Betriebsmodus möglich ist."
"Man sieht immer wieder, dass die Gruppen ihre Memristorschaltungen mit Modellen simulieren, die hohe Dynamik der Zellen überhaupt nicht berücksichtigen. Diese Schaltungen werden niemals funktionieren." so Stephan Menzel, der die Modellierungsaktivitäten am Peter Grünberg Institut leitet und leistungsfähige
Kompaktmodelle entwickelt hat, die mittlerweile öffentlich zugängig sind. "In unserem Reviewartikel liefern wir die Grundlagen, die für eine korrekte Verwendung unserer Kompaktmodelle extrem hilfreich sind."
COMPAMED.de; Quelle: Forschungszentrum Jülich