Doch auch dort, wo wir nicht direkt mit ihnen in den Kontakt kommen, sind selbstständig arbeitende Roboter zunehmend unerlässlich: als flinke und unermüdliche Helfer in Logistikzentren oder als präzise und starke Partner in Fertigungsumgebungen.
Um in diesen Anwendungen autonom, also möglichst eigenständig ohne Überwachung durch Menschen, arbeiten zu können, sind diese Roboter mit Sensoren und Elektronik gespickt, die es ihnen ermöglichen, ihre Umgebung wahrzunehmen und auch unvorhergesehene Situationen eigenständig zu bewältigen. Je komplizierter das Aufgabengebiet, desto intelligenter und agiler muss die Maschine sein. Dies führt dazu, dass immer mehr und verschiedene Sensoren, etwa für die Abstandsmessung, für die Bewegungserfassung oder die Druckbestimmung bei Berührungen, kombiniert werden und die Elektronik und Computertechnik für die Erfassung und Verarbeitung der Daten immer leistungsstärker sein muss.
Allerdings geht dieser Trend zu mobilen Supercomputern mit einem erheblich steigenden Energieverbrauch einher. Besonders bei mobilen Systemen führt dies zu verkürzen Einsatzdauern oder Reichweiten und stößt laut aktuellen Prognosen in den nächsten Jahrzehnten gar an die Grenzen der weltweiten Energieerzeugung.
Um dieser Eskalation entgegenzuwirken, setzen die in NeurOSmart beteiligten Fraunhofer-Forscherinnen und Forscher auf eine dezentrale Intelligenz, die auf den jeweiligen Sensor maßgeschneidert wird. Das Projekt hat eine Laufzeit von vier Jahren und ein Finanzvolumen von acht Millionen Euro. Als Vorbild für die zu entwickelnde sogenannte neuromorphe Elektronik dient das menschliche Gehirn, denn dieses ist trotz seiner enormen Rechenleistung sehr energiesparend beim Treffen von Entscheidungen.
"Diese Art der Datenverarbeitung, also des Denkens, wird durch eine neuartige analoge Computer-Speichertechnologie realisiert, die zudem in der Lage ist, Rechenoperationen durchzuführen, wenn Daten in dem System neu erfasst werden", erläutert der ISIT-Wissenschaftler und Projektleiter Dr. Michael Mensing: "In der Praxis wird dies genutzt, um Objekte und ihr Verhalten exakt und in Echtzeit zu erkennen." Bisher sind für diese Funktionsweise mehrere getrennt entwickelte Komponenten in Computern und eine besonders energieaufwändige Kommunikation zwischen ihnen nötig.
Unterstrichen werden die Vorteile des neuen Ansatzes durch die parallele Entwicklung besonders kleiner und effizienter Modelle für die Objekterkennung und -klassifizierung, die speziell auf den Sensor, die neuen Möglichkeiten der direkt integrierten Elektronik und ihre Anwendungen angepasst werden. Das Resultat ist eine schnelle Reaktionszeit, erhöhter Datenschutz und erhebliche Energieeinsparung gegenüber dem aktuellen Trend von praxisfernen oder cloudbasierten Lösungen, die bevorzugt auf immer größere, energieintensivere Modelle zurückgreifen.
In den nächsten vier Jahren soll dieser Ansatz erstmals mit einem komplexen, bei Fraunhofer entwickelten LiDAR-System (Light Detection And Ranging) kombiniert und in anwendungsnaher Umgebung erprobt werden. Dieses Sensorsystem ist ein entscheidender Bestandteil autonom arbeitender Systeme, da er seine Umgebung mithilfe detaillierter Abstandsinformationen auch bei schlechtem Wetter und über einen weiten Entfernungsbereich erkennt. Als erste Probe der neuartigen Sensoren werden sie in den nächsten Jahren in Robotersysteme integriert, die ihre menschlichen Kolleginnen und Kollegen in Fertigungsumgebungen unterstützen, beispielsweise durch das Bewegen von schweren Lasten oder Anreichen von Komponenten.
COMPAMED.de; Quelle: Fraunhofer-Institut für Siliziumtechnologie