Eine neue Methode, um Proteine selektiv an Nanopartikel zu binden, beschreibt ein deutsch-chinesisches Forscherteam um Chemiker Prof. Bart Jan Ravoo vom "Center for Soft Nanoscience" der Westfälischen Wilhelms-Universität Münster (WWU). Die Nanopartikel erkennen automatisch spezielle Peptide, also sehr kleine Proteine, und gehen jeweils eine hoch selektive Bindung mit ihnen ein. Unter den Peptiden, die die Wissenschaftler exemplarisch untersuchten, waren auch Amyloide. Ablagerungen von Amyloiden spielen beispielsweise bei der Alzheimer-Erkrankung eine zentrale Rolle. Die Wissenschaftler hoffen daher, dass der von ihnen entdeckte Mechanismus einen neuen Ansatz zur Behandlung von Erkrankungen liefern könnte, bei denen derartige Ablagerungen auftreten.
Die Wechselwirkung zwischen Proteinmolekülen untereinander oder auch mit anderen Biomolekülen spielt eine zentrale Rolle in sehr vielen physiologischen Prozessen. Die molekulare Erkennung umfasst dabei die Bindung von Proteinen durch Kontaktpunkte im Nanomaßstab auf der Proteinoberfläche. Typischerweise sind sehr viele dieser Punkte involviert, sodass eine einzigartige, passgenaue und komplementäre Kontaktoberfläche entsteht. Der Mechanismus der Bindung der Proteinmoleküle wird daher als "Schlüssel-Schloss-Prinzip" bezeichnet. Die Wissenschaftler beschreiben nun eine Methode, um solche Kontaktoberflächen auf Nanopartikeln zu erzeugen, sodass gezielt ausgewählte Proteine gebunden werden können.
Neu an der Methode ist, dass sie auf den Prinzipien der Selbstorganisation und der sogenannten Heteromultivalenz beruht. Selbstorganisation bedeutet: Die Nanopartikel werden nicht - wie üblich - durch komplexe und maßgeschneiderte chemische Synthese hergestellt. Stattdessen erzeugen die Forscher sie mit einem vergleichsweise einfachen Verfahren, bei dem zwei lipidartige ("fettartige") Komponenten in Wasser gemischt werden und spontan die benötigten Nanopartikel bilden. Diese Partikel sind adaptiv, das heißt, sie ändern ihre innere Struktur und erreichen so eine optimale Bindung an das Zielprotein. "Heteromultivalenz" heißt: Die Nanopartikel bilden sehr viele unterschiedliche Kontaktpunkte, die zeitgleich mit dem Protein wechselwirken. Nach dem Vorbild natürlicher physiologischer Prozesse entsteht so eine besonders hohe Selektivität.
"Insbesondere dieses Prinzip der Heteromultivalenz wurde bisher noch kaum im Detail untersucht oder ausgenutzt", sagt Bart Jan Ravoo. "Wir beschreiben eine völlig neue Herangehensweise, die es ermöglichen wird, weitere künstliche Proteinbinder zu entwickeln. Diese könnten beispielsweise für die Diagnostik oder für die Bildgebung eingesetzt werden oder auch als potenzielle Wirkstoffe infrage kommen." Das Forscherteam zeigte, dass die Nanopartikel Bindungen mit Amyloiden eingehen und dadurch Aggregate dieser Peptide auflösen. Das Auftreten von Amyloid-Aggregaten hängt eng mit der Entstehung von Alzheimer zusammen. Daher könnte die neue Methode ein Ansatz zur Entwicklung von neuen Behandlungsmethoden liefern. Allerdings ist nicht geklärt, ob die Amyloid-Aggregate Alzheimer tatsächlich verursachen oder vielmehr eine Folge der Erkrankung sind. Die neue Methode zum Auflösen der Aggregate wurde bislang zudem nur im Reagenzglas getestet. Es sind also weitere Studien nötig, um ihr Potenzial als Behandlungsansatz sicher beurteilen zu können.
Als selbstorganisierende Bausteine für die Nano-Kontaktpunkte setzten die Wissenschaftler amphiphile, wasserlösliche Cyclodextrin- und Calixaren-Moleküle ein. Sie untersuchten die Bindung der entstandenen Nanopartikel an die Peptide unter anderem per Fluoreszenzspektroskopie. Die Bindung an die Amyloide wiesen sie mit Elektronenmikroskopie nach.
COMPAMED.de; Quelle: Westfälische Wilhelms-Universität Münster