Nanoelektronik: Bauelement aus topologischen Isolatoren
Nanoelektronik: Bauelement aus topologischen Isolatoren
29.10.2019
Physikern der Universität Würzburg ist eine Weltpremiere gelungen: Sie haben ein grundlegendes nanoelektronisches Bauelement realisiert, das auf der in Würzburg entdeckten Materialklasse der topologischen Isolatoren beruht.
Topologische Isolatoren sind Materialien mit besonderen Eigenschaften: Elektrischer Strom fließt nur entlang ihrer Oberflächen oder Ränder, wohingegen sich das Materialinnere isolierend verhält. Solche topologischen Zustände wurden im Jahr 2007 erstmals in Würzburg mit Quantentrögen aus Quecksilber und Tellur (HgTe) nachgewiesen. Nun konnten die Forscher erstmals ein essentielles Element für solche Bauteile konstruieren – einen Quantenpunktkontakt.
Quantentröge verengen sich in der Mitte zu einem Quantenpunktkontakt. Würzburger Physiker haben diese filigrane Anordnung mit neuen Methoden der Nanostrukturierung hergestellt.
Produkte und Aussteller rund um das Thema Nanoelektronik
Sie interessieren sich für Nanoelektronik? Aussteller und damit verbundene Produkte finden Sie im Katalog der MEDICA und COMPAMED 2019:
Quantenpunktkontakte sind quasi-eindimensionale Verengungen in ansonsten zweidimensionalen Strukturen, die nur wenige Atomlagen dünn sind. In topologischen HgTe-Quantentrögen, in denen sich die leitenden Zustände ausschließlich an den Rändern befinden, werden diese Zustände am Quantenpunktkontakt räumlich zusammengeführt. Diese Nähe macht es möglich, potentielle Wechselwirkungen zwischen den Randzuständen zu untersuchen. "Dieses Experiment konnte nur durch einen Durchbruch in unseren lithographischen Methoden gelingen. Das hat es uns ermöglicht, unheimlich kleine Strukturen herzustellen, ohne das topologische Material zu beschädigen. Ich bin davon überzeugt, dass wir durch diese Technologie in naher Zukunft beeindruckende, neuartige Effekte in topologischen Nanostrukturen finden werden", so Molenkamp.
Die JMU-Physiker haben es mit einem ausgefeilten Herstellungsprozess geschafft, die Engstelle besonders präzise und materialschonend zu strukturieren. Dieser technologische Fortschritt erlaubte es ihnen, die topologischen Eigenschaften des Systems experimentell zu detektieren. In diesem Kontext konnte das Team um die Professoren Laurens Molenkamp und Björn Trauzettel erstmals überhaupt wechselwirkende Effekte zwischen den verschiedenen topologischen Zuständen eines Systems anhand anomaler Leitwertsignaturen nachweisen. Die Würzburger Forscher schreiben dieses besondere Verhalten der analysierten topologischen QPCs den speziellen physikalischen Gesetzen eindimensionaler elektronischer Systeme zu.
Untersucht man elektronische Wechselwirkungen in einer räumlichen Dimension, stellt man fest, dass – anders als in zwei oder drei Dimensionen – Elektronen sich wohlgeordnet bewegen, weil es keinerlei Möglichkeit gibt, das vorlaufende Elektron zu überholen. Bildlich gesprochen verhalten sich die Elektronen in diesem Fall wie Perlen auf einer Kette. Diese besondere Eigenschaft eindimensionaler Systeme führt zu interessanten physikalischen Phänomenen. Trauzettel sagt dazu: "Das Zusammenspiel von starker Coulomb-Wechselwirkung und Spin-Bahn-Kopplung kommt in der Natur selten vor. Daher erwarte ich von diesem System fundamentale Erkenntnisgewinne in den kommenden Jahren."