In der vorliegenden Arbeit produzierten die Forscher einen biegsamen Kondensator. "Wir haben im Labor die einzelnen Arbeitsschritte noch in einem Schichtverfahren gemacht, in der Praxis können sie später jedoch komplett von einem 3D-Drucker übernommen werden", erläutert Glier. "Wesentlich hierfür ist aber auch noch die Weiterentwicklung der konventionellen 3D-Drucktechnik, die in der Regel für einzelne Drucktinten optimiert ist. Bei Inkjet-basierten Verfahren könnten die Druckdüsen durch die Nanostrukturen verstopfen", merkt Rübhausen an.
In einem nächsten Schritt wollen die Forscherinnen und Forscher nun überprüfen, wie sich die Struktur der Leiterbahnen aus Nanodrähten unter mechanischer Belastung ändert. "Wie gut hält das Drahtgeflecht beim Biegen zusammen? Wie stabil bleibt das Polymer?", nennt Roth typische Fragestellungen. "Dafür ist die Untersuchung mit Röntgenstrahlung sehr gut geeignet, weil wir nur damit in das Material hineinschauen und so die Leiterbahnen und -flächen der Nanodrähte analysieren können."
An der Arbeit waren Forscherinnen und Forscher der Universität Hamburg, der Königlich-Technischen Hochschule Stockholm, des Wallenberg-Zentrums für Holzwissenschaft in Stockholm, des Hamburger Max-Planck-Instituts für Struktur und Dynamik der Materie und von DESY beteiligt.
COMPAMED.de; Quelle: Deutsches Elektronen-Synchrotron DESY