Bei der Behandlung von genetischen Augenerkrankungen wie zum Beispiel Retinitis Pigmentosa, einer krankhaften Veränderung der Netzhaut, haben Gentherapien ein großes Potenzial für die Augenheilkunde. Grundsätzlich besteht die Netzhaut aus einem komplexen, aber dennoch geordneten Netzwerk verschiedenster Zellen, darunter die lichtempfindlichen Sinneszellen, auch Photorezeptoren genannt, die der Wahrnehmung von Licht dienen. Im Falle einiger genetischer Augenerkrankung sind diese Photorezeptoren in ihrer Funktion gestört. Eine virale Gentherapie kann Abhilfe schaffen. Die speziell hergestellten therapeutischen Viren werden bei der Behandlung mit einer feinen Nadel ins Auge injiziert. Die injizierten Viren erzeugen allerdings keine Erkrankung, sondern transportieren genetisches Material in die Zellen des Auges. Die Funktionsweise ist ähnlich der durch die COVID 19-Pandemie bekannt gewordenen mRNA-Impfstoffe - das genetische Material beschreibt einen Bauplan, der die Zellen am Injektionsort dazu bringt, ein bestimmtes Protein zu produzieren, das bei der jeweiligen Krankheit im Auge fehlt. Auf diese Weise kann die fehlende Funktion des Proteins im Patienten wiederhergestellt werden.
Um die Viren zu den krankhaften Zellen zu transportieren, stehen aktuell zwei Behandlungsmethoden zur Verfügung: die sogenannte intravitreale Injektion, bei der die Viren in den Glaskörper des Auges injiziert werden und die subretinale Injektion, bei der die Viren direkt unter die äußerste Grenzschicht der Netzhaut gespritzt werden.
Professor für Organ-on-Chip Forschung an der Medizinischen Fakultät der Universität Tübingen und Gruppenleiter am NMI entwickelt mit seinem Team kleine mikrofluidische Plattformen, die es erlauben, lebende Substrukturen von Organen in eine kontrollierte Mikroumgebung zu integrieren und so das menschliche Organ außerhalb des menschlichen Körpers nachzubilden. Da diese sogenannten Chips die natürliche, physiologische Mikroumgebung der Zellen im Gewebe nachbilden, verhalten sich die darin integrierten Zellen und Gewebe so als wären sie noch im menschlichen Körper und reagieren auf einen Reiz oder ein Arzneimittel.
Zur "künstlichen" Nachbildung der menschlichen Netzhaut stellte das Team von Prof. Dr. Liebau an der Medizinischen Fakultät der Universität Tübingen aus pluripotenten Stammzellen, die sich in alle Zelltypen des Körpers entwickeln können - ein Netzhaut-Pigmentepithel und Netzhaut-Organoide her. Diese Organoide sind organähnliche Zellzusammenlagerungen und bestehen aus einer Vielzahl verschiedener Zelltypen. Durch die Kombination der mikrofluidischen Organ-on-Chip-Plattformen mit der Organoid-Technologie gelang es den Forschern, die Zellen des Netzhaut-Organoids mit Viren zu infizieren und dort ein grün fluoreszierendes Protein zu produzieren. Der eingesetzte Retina-Chip wurde so konzipiert, dass die therapeutischen Viren analog zur subretinalen Injektion verabreicht werden konnten. Darüber hinaus ermöglichte der Aufbau die Langzeit-Beobachtung der lebenden Zellen und die Quantifizierung der Fluoreszenz, die für die Wirksamkeitsuntersuchung einen ausschlaggebenden Parameter darstellt. Somit zeigen die veröffentlichen Daten das Potenzial von Stammzell-basierten Organ-on-Chip-Modellen als nächste Generation von Screening-Plattformen für zukünftige gentherapeutische Studien.
COMPAMED.de; Quelle: NMI Naturwissenschaftliches und Medizinisches Institut in Reutlingen