An dem Projekt waren Atomphysiker aus der Arbeitsgruppe von Prof. Dr. Dmitry Budker und die Gruppe der experimentellen Festkörperphysiker um Prof. Dr. Mathias Kläui beteiligt. "Wir haben in dieser Arbeit zwei Quantensensing-Techniken kombiniert, die bisher noch nicht gemeinsam auf eine Probe angewendet wurden," erklärt Till Lenz, Erstautor der Veröffentlichung und Doktorand in der AG Budker.
Eine bekannte Methode der Festkörperphysik nutzt den magnetooptischen Kerr-Effekt, um magnetische Domänen abzubilden und die Magnetisierung zu ermitteln. „Aber dadurch erhalten wir nur beschränkte Informationen", so Lenz. Daher erfolgte die Kombination mit einem Magnetometrie-Verfahren auf Basis von Farbzentren in Diamant, um auch das Magnetfeld erfassen zu können. "Wir hoffen, dass wir dadurch neue Erkenntnisse über Festkörperphysik und ferromagnetische Strukturen herausfinden werden", sagt Georgios Chatzidrosos, ebenfalls Doktorand in der Budker-Arbeitsgruppe. Mathias Kläui freut sich über die neuen Messmöglichkeiten: "Die Nutzung von Diamant-Sonden ermöglicht eine Sensitivität, die uns ganz neue Messungen eröffnet."
Diamant ist nicht nur als Schmuckstein bekannt, sondern wird auch für Werkzeuge zum Schneiden und Schleifen verwendet. Ein besonderer Defekt im Kristallgitter verleiht Diamant zudem Eigenschaften, die für die Untersuchung magnetischer Strukturen nutzbar sind. Diese Farbzentren, auch als Stickstoff-Fehlstellen-Zentren bezeichnet, sind kleine Abweichungen von dem reinen Kohlenstoffgitter des Diamanten. Die Stickstoff-Fehlstellen-Zentren nutzt die Arbeitsgruppe von Dmitry Budker als Messsonde für magnetische Phänomene.
Das Prinzip hat sich als ein vielseitig einsetzbares, hochsensitives Instrument für die nichtinvasive Untersuchung etabliert: Magnetometer auf Diamantbasis funktionieren bei sehr tiefen Temperaturen und ebenso über Raumtemperatur hinaus sowie bei kleinsten Entfernungen zwischen Probe und Sonde von nur wenigen Nanometern. "Wir haben eine dünne Lage von Stickstoff-Fehlstellen im Diamantkristall und können damit die magnetische Struktur abbilden und Fotos von den Magnetfeldern machen", beschreibt Dr. Arne Wickenbrock aus der Budker-Arbeitsgruppe das Verfahren. "Damit können wir die magnetooptischen Möglichkeiten ergänzen und erweitern, indem alle Komponenten eines Magnetfelds abgebildet werden", bemerkt Co-Autor Dr. Lykourgos Bougas.
"Die Sonde auf Basis von Farbzentren in Diamant ist wesentlich sensitiver als konventionelle Methoden und liefert uns extrem gute Ergebnisse. Wir stellen dazu interessante Proben bereit, was einzigartige Kooperationsmöglichkeiten ergibt", beschreibt Mathias Kläui den Austausch zwischen den beiden Arbeitsgruppen. "In Kombination ermöglichen unsere beiden komplementären Messmethoden die komplette Rekonstruktion der magnetischen Eigenschaften der Probe", so der Experimentalphysiker. Die jetzt veröffentlichte Arbeit ist durch eine Kooperation im Rahmen des Profilbereiches TopDyn – Dynamics and Topology entstanden, der vom Land Rheinland-Pfalz gefördert wird. Außerdem ist die Arbeit Teil des Projektes "3D MAGiC", das in Kooperation mit dem Forschungszentrum Jülich und der Radboud University im niederländischen Nimwegen erfolgt und mit einem ERC Synergy Grant ausgestattet ist.
"Wir stellen eine neue Plattform für die Bildgebung von Magnetisierung und den resultierenden Magnetfeldern magnetischer Strukturen vor, indem wir Diamant-Magnetsensoren und einen optischen Aufbau verwenden, der uns beide Messvorgänge ermöglicht", schreiben die Autoren in der Veröffentlichung in Physical Review Applied. Daran beteiligt waren außer den beiden Arbeitsgruppen unter anderem auch Prof. Dr. Yannick Dumeige von der Universität Rennes 1, der 2018 mit einem Friedrich Wilhelm Bessel-Forschungspreis der Alexander von Humboldt-Stiftung in der Budker-AG gearbeitet hat. Als HIM Distinguished Visitor war außerdem Prof. Kai-Mei Fu, Physikerin an der University of Washington, an dem Projekt beteiligt.
Die Kooperationspartner planen, die neue Technik künftig bei verschiedenen multidisziplinären Problemen anzuwenden, die für die jeweiligen Partner von Interesse sind. Dazu gehören die Untersuchung von zweidimensionalen magnetischen Materialien, magnetische Effekte molekularer Chiralität und die Hochtemperatur-Supraleitung.
COMPAMED.de; Quelle: Johannes Gutenberg-Universität Mainz