Zahnfüllungen ohne Spalt


Löcher im Zahn werden meist mit Kunststofffüllungen gestopft. Beim Aushärten schrumpft der zunächst weiche Kunststoff jedoch. Durch die Spannung können Spalten zwischen Zahn und Füllung entstehen - neue Kariesherde.

Der Spezialkunststoff für eine Zahnfüllung ist zunächst weich, damit der Arzt ihn gut in das Loch drücken kann. Erst durch das Licht einer kleinen Lampe verfestigt sich die Füllung. Beim Aushärten schrumpft das Material jedoch meist ein wenig. Dabei treten hin und wieder Spannungen auf und es kann passieren, dass zwischen Kunststofffüllung und Zahn kleinste Spalten entstehen. In diesen können sich Nahrungsreste festsetzen, die erneut zu Karies führen.

Die Hersteller von Füllmaterialien bieten verschiedene Kunststoffe an. Doch welche Füllung eignet sich für welche Lochform am besten? Hier sind die Zahnärzte auf ihr Erfahrungswissen angewiesen. "Die Aushärtung ist bisher nicht theoretisch beschreibbar. Die Spannungen, die im Material auftreten, hängen immer von der Form des Lochs ab und sind besonders im Randbereich sehr unterschiedlich. Sie können um den Faktor Zehn variieren", sagt Dr.-Ing. Christof Koplin, wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg. Auch Messungen helfen nicht weiter: Spannungen lassen sich nur punktuell messen, der genaue Spannungsverlauf bleibt bisher im Verborgenen.

Eine neue Simulationsmethode erlaubt es nun, die Spannungen in der Zahnfüllung genau vorherzusagen und für jede Lochform die Kunststoffart zu wählen, in der am wenigsten Spannungen entstehen. Zahnärzte können bei der Wahl des optimalen Füllungsmaterials nun auf Ergebnisse des IWM zurückgreifen, Hersteller ihre Produkte anhand der Simulationen optimieren. "Wir unterteilen die Zahnfüllung gedanklich in tausend bis hunderttausend kleine Pakete und berechnen, wie jedes Element seinen Nachbarn beeinflusst. In die einzelnen Elemente fließen experimentelle Parameter ein: Dazu haben wir zunächst im Labor für jedes Material an einer Standardgeometrie untersucht, wie es auf Belastungen reagiert, die während der Volumenschrumpfung auftauchen - und wie sich die Fließfähigkeit des Materials während der Aushärtung verändert", erklärt Koplin. Für einige Lochformen und Materialien haben die Forscher vom IWM den Spannungsverlauf in der Füllung bereits erfolgreich simuliert, weitere sollen folgen.

COMPAMED.de; Quelle: Fraunhofer Gesellschaft