Oberflächen: Winzige Strukturen mittels Femtosekundenlaser erzeugt

24.07.2013

Mittels Ultrakurzpulslaserbestrahlung ist es Wissenschaftlern der Bundesanstalt für Materialforschung und –prüfung (BAM) gelungen, Strukturen auf Titan zu erzeugen, die winziger als 100 Nanometer (nm) sind.

„Das ist ein Meilenstein für die Bearbeitung von Oberflächen, die im technischen und biomedizinischen Bereich Anwendung finden“, freut sich Jörg Krüger von der BAM. Das Besondere daran: Der eingesetzte Laser selber erzeugt „nur“ Strahlung einer Wellenlänge von 790 nm. „Wenn Sie normalerweise einen Strahl eines Lasers dieser Art fokussieren, tritt Beugung auf, die Ihnen nach den Gesetzen der klassischen Fernfeldoptik die erzielbare Auflösung etwa auf die Hälfte der Wellenlänge begrenzt“, erklärt sein Kollege Jörn Bonse. Also wären eigentlich nur circa 400 nm möglich gewesen. Doch wie konnten die Wissenschaftler dann diese winzigen regelmäßigen Strukturen gezielt auf einer Titanoberfläche erzeugen?

Ein Blick ins Elektronenmikroskop zeigt Riefen, die ein bisschen an die Wellenstruktur auf dem Meeresboden erinnern. Diese Riefen sind das Ergebnis eines Beschusses des Materials mit ultrakurzen Laserimpulsen. 50 Mal kurz hintereinander wird ein Impuls von nur 30 Femtosekunden Dauer auf das Material geschickt, berichten die Wissenschaftler. Eine Femtosekunde sind 10 hoch -15 Sekunden.

„Diese Riefenstrukturen sehen wir nur ganz knapp oberhalb einer Schwelle, an der überhaupt eine Veränderung am Material erfolgt“, berichtet Bonse. Wird die Energiedichte geringfügig erhöht, dann entstehen viel größere Riefen mit Perioden von einigen 100 nm. Doch die waren in diesem Projekt nicht erwünscht. Geforscht werden sollte nach Strukturen unterhalb der 100 nm-Grenze.

Die richtigen Parameter zu finden war nicht einfach, das Verfahren selber ist aber vergleichsweise unkompliziert und industriekonform. Man arbeitet unter Luft und muss nicht aufwendig ein Vakuum erzeugen, wie es notwendig wäre, wenn man Laser einsetzen würde, die eine Wellenlänge von deutlich unter 200 nm erzeugen. Und es ist ein Verfahren, das in einem Schritt durchgeführt werden kann. Die Probe wird eingespannt und mit dem Laser bestrahlt. Die Impulse generiert man in einem sogenannten Oszillator, verstärkt sie in einem Kristall und fokussiert sie dann mit einem Hohlspiegel.

Woher die kleinen Strukturen kommen, darüber rätseln die Wissenschaftler noch. Es gibt verschiedene Ansätze, aber ganz verstanden ist der Prozess noch nicht. Das Projekt ist auch noch nicht beendet. In den kommenden zwei Jahren geht es darum, das Material Reibungsversuchen auszusetzen. Im biomedizinischen Bereich sehen die Wissenschaftler die Bearbeitung von Implantaten als einen Bereich der Anwendung. Durch diese winzigen Riefenstrukturen – so die Hoffnung der BAM-Wissenschaftler – könnte das bearbeitete Material besser vom Körper aufgenommen werden und Zellen es einfacher haben, sich auf der Oberfläche anzusiedeln. Bisher hat man sich bei den Versuchen auf Titan konzentriert. „Der Vorgang ist aber auf andere Materialien übertragbar“, sagt Krüger.

COMPAMED.de; Quelle: Bundesanstalt für Materialforschung und -prüfung