Werkstoffprüfung mit Ultraschall

Werdende Mütter sind mit der Prozedur vertraut: Der Arzt untersucht sie mit einem Ultraschallgerät, auf dem Bildschirm erscheinen lebensechte Bilder des Fötus. Was in der Medizin seit Jahren gang und gäbe ist, wurde bisher bei der Werkstoffprüfung nur in relativ einfacher Form angewandt. Forscher des Fraunhofer-Instituts für Zerstörungsfreie Prüfverfahren IZFP in Saarbrücken haben nun das konventionelle Echolot-Verfahren – eine einfache Ultraschallmethode – umgekrempelt und mit innovativer Software die Erzeugung dreidimensionaler Bilder erreicht; gleichzeitig haben sie die Prüfrate auf das Hundertfache erhöhen können.

Zuverlässige Prüfverfahren sind in vielen Bereichen der Qualitätssicherung oder Produktion: Egal, ob Pipelines, Eisenbahnräder, Kraftwerkkomponenten, Brückenpfeiler oder auch tausendfach gefertigte Massenteile, man muss sicherstellen, dass sich in ihrem Inneren keine Risse oder Fehlstellen befinden. Bei der zerstörungsfreien Werkstoffprüfung hat sich Ultraschall seit vielen Jahren bewährt. Mit einem Prüfkopf strahlt man ihn ins Werkstück hinein, und aus der Laufzeit der zurückreflektierten Signale lässt sich erkennen, wo sich Materialfehler befinden. Werkstücke auf diese Weise abzutasten ist relativ langwierig, da man in einem Prüftakt immer nur einen Einschallwinkel erfasst und die Bilder anschließend daraus zusammensetzt.

Soll die Ultraschallprüfung jedoch in die laufende Produktion integriert oder bei großen Komponenten angewendet werden, ist dieses Vorgehen zu langsam. Doktor Andrey Bulavinov und sein Team haben deshalb eine neue Methode entwickelt, die bis zu 100-mal schneller ist. „Wir arbeiten nicht mehr mit dem Verfahren des Echolots, das ein Schallfeld in eine bestimmte Richtung einstrahlt, sondern erzeugen mit dem Prüfkopf – Experten nennen ihn Phased Array – eine defokussierte, nicht gerichtete Welle, die das Material durchdringt. Dann kommen aus allen Richtungen Signale zurück, und der Rechner rekonstruiert aus diesen das Bild.“ Ähnlich wie das bei seismischen Untersuchungen im Erduntergrund geschieht, analysiert er dabei die physikalischen Veränderungen, die die Welle im Werkstoff erfährt – also Beugung und Überlagerung – und ermittelt daraus die Verhältnisse im Inneren des Materials. „Wir folgen dem Schallfeld“, sagt Bulavinov, „und berechnen so die Eigenschaften des Werkstücks.“ Ähnlich wie in der medizinischen Computertomografie entstehen am Ende dreidimensionale Bilder des untersuchten Objekts, auf denen eventuelle Fehlstellen leicht erkennbar sind. Das Verblüffende an diesem Verfahren: Ein Riss ist auch zu sehen, wenn er gar nicht direkt angeschallt wird.


COMPAMED.de; Quelle: Fraunhofer