Wenn Licht auf eine metallische Nanostruktur trifft, kann es darin Wellen in der Dichte der Elektronen anregen. Durch diese Dichtewellen wirkt die Nanostruktur dann wie eine Antenne für Licht – ähnlich wie herkömmliche Antennen in Radios oder Mobiltelefonen für langwelligere Strahlung. Bei den im Alltag eingesetzten Antennen sind die Dichteänderungen und die damit verbundenen elektrischen Felder meist klein. Nicht so bei der Nanoantenne:

Zwei Metallspitzen sind auf der Nanometerskala voneinander getrennt, das heißt, sie liegen weniger als ein Hunderttausendstel der Dicke eines menschlichen Haares auseinander. „So wird die Energie in der Lichtwelle auf ein winziges Volumen fokussiert, was enorme elektrische Felder hervorruft und ganz neue Anwendungen ermöglicht“, berichtet der Physiker Professor Gerd Schön vom Center for Functional Nanostructures des KIT. Allerdings war es bisher schwierig, die erhöhte Feldstärke im Experiment direkt nachzuweisen.

Einer internationalen Forschergruppe ist dies nun gelungen: Doktor Fabian Pauly, Leiter einer Nachwuchsgruppe am Institut für Theoretische Festkörperphysik des KIT, und Kollegen haben mit theoretischen Untersuchungen die praktischen Experimente von Professor Douglas Natelson und Daniel R. Ward von der Rice University in Houston begleitet. In einer Probe, in der zwei metallische Spitzen durch einen weniger als einen Nanometer großen Spalt voneinander getrennt sind, maßen die Forscher die Feldstärke und fanden dabei Erhöhungen von mehr als einem Faktor tausend. Dies erreichten sie durch eine geschickte Kombination von optischer Gleichrichtung und hochempfindlichen Leitwertmessungen.

Messungen und Ergebnisse zeigen die Möglichkeiten und Grenzen von metallischen Nanoantennen für Licht – sogenannten plasmonische Antennen – für die spektroskopischen Untersuchungen von Oberflächen, für chemische, biologische und medizinische Sensoren, aber auch für die Grundlagenforschung zur Wechselwirkung von Licht und Materie auf der Nanometerskala. Mit ähnlichen Themen der Nanooptik sind derzeit verschiedene Forschergruppen des KIT in weiterführenden theoretischen und experimentellen Studien befasst.


COMPAMED.de; Quelle: Karlsruher Institut für Technologie