Weltweit erstes Ganglabor entwickelt


Dafür haben sie den PogoWalker entwickelt. Er sieht nicht wie ein typischer Maschinenmensch aus: Zwei gelenkfreie Metallstäbe mit je einer Kugel am Ende und ein kastenähnlicher Überbau - das ist auf den ersten Blick alles. Beim näheren Hinsehen fallen einige Federn aus Metall auf sowie eine Menge dünner, schwarz-roter Kabel. Gebündelt ragen sie aus dem Metallgestell, dem ausgedehnten Oberkörper des Roboters, heraus. Sie enden verzweigt in verschiedenen Apparaturen an der Wand des Raumes.

Dieser Roboter wurde gerade erst am Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena eingerichtet. "Wir haben hier das erste Ganglabor für Roboter eingerichtet", sagt Arbeitsgruppenleiter Dr. Andre Seyfarth.

"Unser Ziel ist es, die menschliche Fortbewegung bis ins kleinste Detail zu verstehen", macht Dr. Seyfarth deutlich. Aus ihren Messdaten und Beobachtungen haben die Jenaer Wissenschaftler Modelle erarbeitet und testen mit Hilfe der Roboter ihre Funktionalität. Die Voraussetzung dafür wurde jetzt mit dem Robotiklabor geschaffen, wo den Wissenschaftlern ein eigens für die Roboterforschung hergestelltes Laufband zu Verfügung steht.

Doktorand Moritz Maus untersucht in dem neuen Labor jetzt ein Problem, das bei realen Robotern bisher große Schwierigkeiten bereitet: die Stabilität bei hohen Geschwindigkeiten. Hierfür hat er eine Strategie entwickelt, die den Oberkörper stabilisiert, indem die Bodenreaktionskraft stets auf einen bestimmten, virtuellen Drehpunkt im Oberkörper gerichtet ist.

Mit dem PogoWalker testet der Jenaer Physiker die Funktionalität seiner Theorie. Noch wird der aus zwei gefederten Stabbeinen und einem ausgedehnten Oberkörper bestehende Roboter auf dem Laufband von zwei Glasplatten flankiert. Dadurch werden seitliche Bewegungen verhindert, so dass der PogoWalker gewissermaßen zweidimensional läuft. Irgendwann wollen die Jenaer Wissenschaftler die Glasscheiben entfernen und die Stabilisierung auch in drei Dimensionen testen. "Statt großen Füßen hat der PogoWalker nur einen punktförmigen Bodenkontakt", erläutert Maus. "Trotzdem hält er in dem von uns entwickelten Modell seine Stabilität auch bei Geschwindigkeiten über 25 km/h."

"Wenn wir zeigen können, dass elastische Strukturen zusammen mit unserer Theorie der Oberkörperstabilisierung zu solidem Laufverhalten führen, wäre das ein bahnbrechendes Ergebnis", ist Arbeitsgruppenleiter Andre Seyfarth überzeugt. Seine Forschungsgruppe beschäftigt sich darüber hinaus mit dem Hüpfen als Teil der Bewegung, dem Einfluss der verschiedenen Beinmuskeln und dem Aufspüren der neuronalen Aspekte beim Laufen. "Wir betreiben hier Grundlagenforschung, denn nur wenn wir die biologischen Grundlagen eindeutig verstehen, können wir sie in effektive technische Systeme übernehmen", ist Seyfarth überzeugt. "Irgendwann", so hofft er, "werden unsere Erkenntnisse auch dabei helfen, die perfekten Beinprothesen zu bauen."

COMPAMED.de; Quelle: Friedrich-Schiller-Universität Jena