Verschränkung auf Distanz gehalten

Foto: Illustration von Laborversuch

Mit dem so entstandenen „Hybrid-System“ haben die Forscher den Grundbaustein für ein Quantennetzwerk realisiert. Bei dem quantenmechanischen Phänomen der Verschränkung werden zwei Quantenteilchen so miteinander verknüpft, dass ihre Eigenschaften streng miteinander korreliert sind. Dazu müssen die Teilchen direkt miteinander in Kontakt kommen. In einem Quantennetzwerk benötigt man jedoch für viele Anwendungen Verschränkung zwischen weit entfernten Knoten (den „ruhenden Quantenbits“).

Um dies zu erreichen können zum Beispiel Lichtteilchen, sogenannte Photonen (die „fliegenden Quantenbits“) zur Übertragung der Verschränkung genutzt werden. Schon in der klassischen Telekommunikation werden Daten heutzutage mit Licht zwischen Rechnern oder Telefonen übermittelt. Im Fall eines Quantennetzwerkes ist dies jedoch ungleich schwieriger, da verschränkte Quantenzustände äußerst zerbrechlich sind und nur bestehen bleiben, wenn die beiden Teilchen perfekt von ihrer Umgebung isoliert sind.

Diese Hürde haben die Garchinger Physiker jetzt genommen, indem sie zwei unterschiedliche, in verschiedenen Laborräumen befindliche atomare Quantensysteme in einen verschränkten Zustand brachten: auf der einen Seite ein einzelnes Rubidiumatom, das in einem aus zwei hochreflektierenden Spiegeln gebildeten Resonator gefangen ist, auf der anderen Seite ein Ensemble aus Millionen extrem kalten Rubidiumatomen, die ein so genanntes Bose-Einstein-Kondensat (BEC) bilden. Im BEC besitzen alle Teilchen die gleichen Quanteneigenschaften, sind ununterscheidbar und verhalten sich gemeinsam wie ein einziges großes „Superatom“.

Zunächst wird das einzelne Atom im optischen Resonator mit einem Laserpuls zum Aussenden eines Photons angeregt. Dabei werden innere Freiheitsgrade des Atoms so mit der Polarisation des Photons verknüpft, dass beide Teilchen miteinander verschränkt sind. Über ein 30 Meter langes Glasfaserkabel wird das Photon in ein benachbartes Labor überführt und dort auf das BEC gelenkt. Hier wird es absorbiert und in Form einer kollektiven Anregung aller Atome des BECs gespeichert. „Der Austausch von Quanteninformation zwischen Photonen und atomaren Quantensystemen erfordert eine starke Licht-Materie-Wechselwirkung“, erklärt Matthias Lettner, Doktorand am Experiment. „Während wir dies beim einzelnen Atom durch die Vielfachreflexionen zwischen den beiden Spiegeln des Resonators erreichen, wird die Licht-Materie-Wechselwirkung beim BEC durch die große Zahl an Atomen verstärkt.“

Dass Einzelatom und BEC durch die Übertragung des Photons wirklich miteinander verschränkt sind, weisen die Physiker in einem weiteren Schritt nach. Dazu wird mithilfe eines Laserpulses das im BEC absorbierte Photon wieder freigesetzt und der Zustand des Einzelatoms durch die Erzeugung eines zweiten Photons ausgelesen. Aus der Verschränkung der beiden Photonen mit 95% des maximal möglichen Wertes lässt sich schließen, dass die Verschränkung der beiden atomaren Quantensysteme mindestens ebenso gut ist. Des Weiteren besteht die Verschränkung rund 100 Mikrosekunden lang. Das ist hundert Mal länger als der Übertragungsprozess dauert.

COMPAMED.de; Quelle: Max-Planck-Institut für Quantenoptik