Verringerter Reibungsverlust und Verschleiß von Materialien

Materialforscher an der Universität des Saarlandes und dem Material Engineering Center Saarland (MECS) haben deshalb eine Lasertechnologie entwickelt, mit der man die Oberflächen von Materialien präzise bearbeiten kann. Die Laserstrahlen erzeugen dreidimensionale Muster und verändern die innere Struktur der Materialien an der Oberfläche in einer nur hauchdünnen Schicht. Dadurch werden Materialoberflächen reibungsarm und weniger anfällig für Verschleiß.

Nach verschiedenen Schätzungen verursachen Reibung und Verschleiß von Materialien jedes Jahr einen volkswirtschaftlichen Schaden von fünf bis acht Prozent des Bruttoinlandproduktes. „Durch Reibung geht vor allem Energie verloren. Bei einem Dieselmotor werden beispielsweise nur maximal 30 Prozent des Kraftstoffes direkt in Antriebsenergie umgesetzt“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Direktor des Material Engineering Center Saarland.

Durch Reibung würden Materialien zudem stärker beansprucht und alterten dadurch schneller. Viele Ingenieure forschten daher an robusteren Beschichtungen für Werkstoffe, etwa aus Keramik oder Metall-Legierungen. „Wir haben hingegen ein Verfahren entwickelt, mit dem man direkt die Oberfläche der Materialien bearbeiten kann und ihre Struktur so verändert, dass sie widerstandsfähiger wird und weniger Reibungsfläche bietet“, erläutert Professor Mücklich.

Bei der so genannten Laserinterferenz-Technologie werden mehrere gebündelte Laserstrahlen auf das Material gerichtet. Dabei überlagern sich die Laserstrahlen wie Wellen, die entstehen, wenn man Steine ins Wasser wirft (Interferenz). Auf einen Schlag kann man dadurch auf einer Fläche eines Quadratzentimeters äußerst präzise Muster in der Größenordnung von wenigen Nanometern erzeugen.

„Die Hitze trifft ganz punktuell auf die Oberfläche. Wir können auf einem Zehntel Haaresbreite zum Beispiel Wolfram mit fast 4.000 Grad Celsius schmelzen. Direkt daneben, also etwa fünf Tausendstel Millimeter weiter, bleibt das Material praktisch unverändert“, sagt Carsten Gachot, wissenschaftlicher Mitarbeiter am Institut von Professor Mücklich und der Leiter der Lasergruppe. Durch die extreme Hitze des Laserstrahls wird die Oberfläche in ihrer Topographie verändert, es entstehen winzig kleine Vertiefungen und Erhebungen. „Die Laserstrahlen kann man aber auch dazu benutzen, um die innere Struktur des Materials in einer nur hauchdünnen Schicht zu verändern“, erläutert Carsten Gachot das von dem Forscherteam entwickelte Verfahren.

Die mit den Laserstrahlen erzeugten Muster verleihen den Materialoberflächen ganz bestimmte Eigenschaften. Diese können beispielsweise so modelliert werden, dass sie sich im Flüssigkeitsstrom als besonders reibungsarm erweisen. Die Technologie lässt sich außerdem dafür verwenden, um winzige Ausbuchtungen für Schmieröl-Vorräte auf den Oberflächen zu erzeugen. „Das spielt zum Beispiel bei den Lagern von Windkraftanlagen eine wichtige Rolle, die auf offener See nur sehr aufwändig gewartet werden können.

Mithilfe der Laserinterferenz-Technologie wollen wir die Oberflächen der Windrad-Wellen so behandeln, dass auch auf lange Sicht eine niedrige Reibung und gleichmäßige Schmierung garantiert sind“, erläutert Mücklich. Im Vergleich zu anderen Verfahren sei die Lasertechnologie für Unternehmen sehr effektiv, da sie die Produktion beschleunige und keine weiteren Zusatzstoffe benötige. Wenngleich die Anschaffung einmalig kostenintensiv sei, würde sie sich meist schon nach kurzer Zeit rechnen.

COMPAMED.de; Quelle: Universität des Saarlandes