Rätsel atomar glatter Oberflächen gelöst

Diamantähnliche Kohlenstoffschichten haben einen geringen Reibwert und einen hohen Verschleißwiderstand. Dies sind ideale Ausgangsbedingungen für sich gegeneinander bewegende Bauteile, wie sie im Maschinenbau oder der Mikroelektronik vorkommen. Hergestellt aus gewöhnlichem Kohlenstoff bestimmt die Anordnung der einzelnen Atome in der Schicht deren Eigenschaften.

"Um Schichten (…) in ihrem Aufbau optimieren und gezielt einstellen zu können, wollen die Entwickler und Hersteller der Schichten verstehen, auf welche Weise sich die Atome auf der Oberfläche abscheiden und wie die Schicht wächst", beschreibt Michael Moseler vom Fraunhofer-Institut für Werkstoffmechanik IWM die Herausforderung.

Nun wissen die Wissenschaftler, dass beim Beschichtungsprozess wie beim Schütten von Sand auf eine Oberfläche an vielen Stellen kleine Erhebungen entstehen. Treffen die Kohlenstoffatome auf die Hänge dieser Unebenheiten, so werden diese wie beim Laufen über ein Geröllfeld nach unten getrieben. Es kommt zu einer Erosion im atomaren Maßstab, die zur viel zitierten extremen Glätte führt. "Was hier einfach klingen mag, ist für die Beschichtung von hoher Bedeutung" betont Peter Gumbsch von der Universität Karlsruhe, "Die Prozessfenster, in denen die gewünschte Oberflächenstruktur erreicht werden kann, können mit den neuen Simulationsmöglichkeiten wesentlich besser vorhergesagt werden".

Die mathematische Beschreibung der Entstehung und des Wachstums diamantähnlicher Kohlenstoffschichten macht nun den Weg frei für das virtuelle Design von Oberflächenstrukturen mit maßgeschneiderten Eigenschaften. "Denn jetzt, wo wir die Glätte beherrschen, können wir auch gezielt Strukturierungen einstellen", so Moseler.

COMPAMED.de; Quelle: Fraunhofer-Institut für Werkstoffmechanik IWM