Den Grund hierfür haben Forscher der Universität Stuttgart, des Max-Planck-Instituts für Metallforschung und der TU Berlin gefunden, als sie versuchten einer Lage geladener Kolloidteilchen mit starken Laserfeldern eine siebenzählige Symmetrie aufzuzwingen: Für die Entstehung geordneter Strukturen sind demnach Keimzellen erforderlich, die in Symmetrien, die die Natur bevorzugt, besonders häufig auftreten.

Atome in Metallen ordnen sich häufig nach einer sechszähligen Rotationssymmetrie an. Daneben existieren andere, kompliziertere Strukturen, etwa mit fünf-, oder zehnzähliger Rotationssymmetrie. „Bemerkenswert ist, dass Materialien mit sieben-, neun- oder elfzähliger Symmetrie in der Natur noch nie beobachtet wurden“, sagt Professor Clemens Bechinger, von der Universität Stuttgart. Wurden solche Materialien bisher einfach übersehen oder hat die Natur etwa eine Abneigung gegen gewisse Symmetrien? Die Antwort könnte helfen, Materialien für technische Anwendungen maßzuschneidern.

Um Materialien mit siebenzähliger Symmetrie herzustellen, greifen die Forscher zu einem Trick: Sie erzeugen mit Laserstrahlen ein Lichtmuster mit siebenzähliger Symmetrie. Darin bringen sie eine Lage von Kolloidteilchen ein. Das elektromagnetische Feld des Lichtmusters wirkt auf die Teilchen wie eine Gebirgslandschaft, in der sie sich bevorzugt in die Täler setzen. Die Kolloidteilchen versuchen eine Anordnung mit sechszähliger Symmetrie zu bilden. Indem die Forscher die Intensität der Laser erhöhen, verstärken sie den Zwang auf die Teilchen, eine siebenzählige Symmetrie zu bilden.

Das Wissen, wie sich neue Materialien mit unkonventionellen Symmetrien erzeugen lassen, ist nützlich, da sie über interessante Eigenschaften verfügen, wie etwa einen sehr kleinen Reibungswiderstand. In Form von dünnen Beschichtungen könnten solche Materialien beispielsweise die Gleitfähigkeit beweglicher Teile verbessern. Auch photonische Kristalle mit siebenzähliger Symmetrie bieten neue Verwendungsmöglichkeiten, da ihre optischen Eigenschaften weniger stark von der Einfallsrichtung eines Lichtstrahls abhängen.


COMPAMED.de; Quelle: Universität Stuttgart