Neue Kunststoffe mit veränderbaren Eigenschaften

Die Polymere, wie sie in Plastikflaschen verarbeitet werden, haben nach ihrer Herstellung feste, nicht veränderbare Eigenschaften. Das liegt an den sehr festen Bindungen, die die Bausteine dieser Polymere zusammenhalten.

Weniger fest sind dagegen die sogenannten nicht-kovalente Bindungen, die sich relativ leicht durch äußere Reize beeinflussen lassen. Genau die nutzt das Team um Professor Carsten Schmuck, Wissenschaftler vom Center for Nanointegration der Universität Duisburg-Essen (CeNIDE), um ein lineares, langgestrecktes Polymer aufzubauen. Die äußeren Reize sind der pH-Wert der Umgebung sowie die An- oder Abwesenheit von elektrisch geladenen Metallatomen, Metall-Ionen.

Das kann man sich nun so vorstellen: In einer Flüssigkeit schwimmen einzelne Moleküle. Werden besagte Metall-Ionen hinzugefügt, passen sie wie eine Kugel (Metall-Ion) in eine halbkugelförmige Schale (Molekül), sodass sich nun immer zwei Moleküle mit einem Metall-Ion in ihrer Mitte zusammenlagern. Ist die Flüssigkeit zudem vom pH-Wert her neutral, lagern sich diese Molekülzwillinge zusammen als wären sie magnetisch und bilden lange Ketten. Das Polymer ist fertig.

Mehrere dieser Polymerketten lagern sich anschließend zu einem Knäuel zusammen und bilden damit das erste alltagstaugliche, zweifach schaltbare Polymer. Bisher waren dazu sehr spezielle Laborbedingungen erforderlich. Anders die Entdeckung von Schmuck. Das lineare Polymer bildet sich auch in Wasser und über die beiden äußeren Reize kann man die Materialeigenschaften sehr gezielt steuern.

Ein mögliches Einsatzgebiet dieser Grundlagenforschung könnte die Medizin sein, etwa die „target controlled drug delivery“, eine vom Zielgebiet ausgelöste Medikamentenfreisetzung. Im gut verträglichen Polymerknäuel könnte zum Beispiel ein Medikament gegen bestimmte Tumorzellen deponiert werden. Ein Tumor zeichnet sich unter anderem dadurch aus, dass seine Blutgefäße recht löchrig sind und er saurer ist als das ihn umgebende gesunde Gewebe.

Durch ein solches Loch in der Gefäßwand gelangt das Polymerknäuel in den Tumor. Der niedrige pH-Wert in dessen Inneren lässt das Knäuel zerfallen, sodass das Medikament freigesetzt wird; genau an der richtigen Stelle und ohne gesundes Gewebe zu beeinflussen. Für den Einsatz im menschlichen Körper würde man auch nicht mit Metall-Ionen arbeiten, sondern beispielsweise Temperaturunterschiede nutzen, um die Bildung des Polymers zu steuern, aber das Prinzip ist dasselbe.



COMPAMED.de; Quelle: Universität Duisburg-Essen