Nanolive-Projekt entwickelt STED-Mikroskopie weiter

In der konventionellen Lichtmikroskopie, die heute breiten Einsatz in der biologischen und medizinischen Forschung findet, stellt das von Ernst Abbe 1873 formulierte Gesetz für die räumliche Auflösung eine physikalische Grenze dar, um Prozesse auf zellulärer Ebene zu beobachten. Forscher haben nun Wege gefunden, um diese Auflösungsgrenze von ca. 200 nm fundamental zu überwinden. Eine technische Umsetzung der Erkenntnisse ist die STED-Mikroskopie (Stimulated Emission Depletion), die Auflösungen von unter 50 nm ermöglicht. Sie erlaubt allerdings bisher nur die Untersuchung fixierter, d.h. toter Zellen.

Nun soll die Methode auf die Untersuchung lebender Zellen übertragen werden. Um dieses ehrgeizige Ziel zu erreichen, hat das Göttinger Max-Planck-Institut für Biophysikalische Chemie das Verbundforschungsprojekt "Nanolive" ins Leben gerufen. Sie wollen in den kommenden drei Jahren ein Funktionsmuster eines Lebendzell-STED-Mikroskops realisieren.

Dazu werden instrumentelle Neuerungen, aber auch neue Fluoreszenzfarbstoffe und fluoreszierende Proteine als langlebige und hoch spezifische Marker erforscht. Die Technologie soll nicht nur hoch aufgelöste Einzelbilder, sondern auch schnelle Bildsequenzen aus lebenden Zellen liefern. So könnte man dynamische Prozesse innerhalb oder zwischen einzelnen Zellen abbilden und damit neue Erkenntnisse über Signalübertragung, Zellkommunikation, Transportvorgänge und Zelldifferenzierungen gewinnen.

Dies wollen die Wissenschaftler bereits im Projektverlauf am Beispiel der Signalübertragung durch Nervenzellen aufzeigen. Die hohe wissenschaftliche Relevanz lässt sich auch in wirtschaftlicher Dimension erfassen. So wird das Marktpotenzial für höchstauflösende Mikroskope auf ca. 70 Millionen US-Dollar geschätzt. Darüber hinaus gilt STED als eine Schlüsseltechnologie, die ganz neue Anwendungsfelder in der Biotechnologie und Medizin eröffnen soll.

COMPAMED.de; Quelle: Max-Plank-Institut