Mikroskopische Blicke unter die Oberfläche

Laserstrahlen ermöglichen einen Blick in das Innere von Fliegen, Mäusen oder auch medizinischen Gewebeproben. Die Lasertechnik und Optik des Geräts wurde von Saideh Saghafi entwickelt. Ihr gelang es, aus einem Laserstrahl mit optischen Tricks eine extrem dünne zweidimensionale Laser-Fläche zu machen, mit der man die Proben Schicht für Schicht durchleuchten kann. Dafür erhielt sie nun einen wichtigen Optik-Preis.

Normalerweise sind biologische Gewebe undurchsichtig, weil das Licht an den Grenzschichten zwischen unterschiedlichen Materialien gestreut wird. Aus demselben Grund können wir nicht durch dichten Nebel hindurchsehen: Jedes einzelne schwebende Nebeltröpfchen streut das Licht – und so erkennt man nur ein diffuses Weiß.

Damit die innere Struktur von biologischem Gewebe abgebildet werden kann, muss man es zunächst für Laserstrahlen durchsichtig machen. „Die Probe wird zunächst geklärt: Das enthaltene Wasser wird durch eine Flüssigkeit mit anderen optischen Eigenschaften ersetzt, dadurch können die Laserstrahlen tief in die Probe eindringen“, erklärt Saghafi. Gemeinsam mit ihren Kollegen in der Abteilung von Professor Hans Ulrich Dodt erzeugt sie so Bilder von bisher noch nie erreichter Qualität, die für die medizinische Forschung wichtige Informationen liefern. Auch für die Untersuchung und 3D Darstellung von menschlichen Tumoren aus der Pathologie ist das neuartige Ultra-Mikroskop bestens geeignet.

Aus einem gewöhnlichen, runden Laserstrahl wird durch optische Tricks zuerst ein elliptischer Strahl, und daraus dann eine dünne Licht-Schicht gemacht. „Nur etwa 1.5 Mikrometer dick ist die Fläche aus Laserlicht, die wir mit unseren Linsen herstellen“, sagt Saghafi. Vom Laserlicht angeregt beginnt eine extrem dünne Schicht der Probe zu fluoreszieren – und dieses Leuchten kann mit einer Kamera aufgenommen werden. Die Grundidee der Ultramikroskopie wird an der TU Wien schon seit Jahren verwendet, doch Saghafis dünne Laser-Schichten haben die Präzision des Mikroskopes nun noch einmal entscheidend verbessert.

Schicht für Schicht durchleuchtet man die Probe mit Laserlicht und nimmt jedes Mal ein Bild auf. Daraus wird am Computer ein vollständiges dreidimensionales Modell der Probe aufgebaut. So entstehen detaillierte Bilder von winzigen Fruchtfliegen und vom komplexen neuronalen Netzwerk in Mäusegehirnen. „Ohne das Durchleuchten der Probe mit der Laser-Fläche müsste man die Probe in dünne Schichten schneiden und dann einzeln mikroskopieren. Dabei könnte man natürlich niemals die Genauigkeit erreichen, die wir mit unserem Ultramikroskop erzielen“, erklärt Saghafi.

COMPAMED.de; Quelle: Technische Universität Wien