Tisch: Mikroskope schwingungsfrei aufstellen

18.03.2014
Foto: Tisch für Rasterelektronenmikroskop

Diese Plattform beruhigt Schwin-
gungen in allen Raumrichtungen;
© Fraunhofer LBF

Rasterelektronenmikroskope reagieren extrem empfindlich, sie werden selbst durch geringe Bewegungen in der Umgebung gestört. Schwingungstische dämpfen diese Erschütterungen. In einem neuartigen System sind nun erstmals alle Sensoren und Aktoren direkt in einer Lagerung integriert – somit ist die Plattform kostengünstiger und kompakter als bisherige Modelle.

Behaarte Spinnenbeine, das alienhafte Gesicht einer Ameise, pieksig aussehende Pollen, die Oberfläche von Nierensteinen – Rasterelektronenmikroskope liefern hochaufgelöste, detailreiche Aufnahmen. Doch um einwandfreie Bilder machen zu können, muss das Mikroskop vor Schwingungen geschützt werden. Wackelt der Tisch, weil etwa jemand durch den Raum läuft oder der Aufzug im nahegelegenen Flur zwischen den Stockwerken hin- und herfährt, macht dies die Aufnahmen meist unbrauchbar. Die einfachste Möglichkeit, die lästigen Schwingungen auszuschalten, ist eine Granitplatte: Der Stein ist so schwer, dass er Ausschläge verringert. Stellt man das Mikroskop darauf, wird es deutlich weniger von hochfrequenten Schwingungen beeinträchtigt. Niederfrequente Schwingungen, wie sie beispielsweise eine vorbeifahrende Trambahn erzeugt, kann die Granitplatte dagegen kaum vom Mikroskop fernhalten. Forscher setzen daher auf aktive Dämpfung, wenn sie empfindliche Messgeräte vor Störungen schützen wollen, genauer gesagt auf eine Isolationsplattform. In jedem der vier integrierten Lagermodule versteckt sich ein Sensor, der die Schwingungen in allen drei Richtungen misst, und ein Aktor, der sie in drei Dimensionen ausgleicht.

Forscher am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt haben nun erstmals einen solchen Dämpfungstisch entwickelt, der aus funktionsintegrierten Bauteilen besteht. "Wir setzen also nicht auf separate Sensoren und Aktoren, die wir in die Tischbeine einbauen, sondern integrieren diese Funktionselemente direkt in das Lagermodul", sagt Torsten Bartel, Ingenieur am LBF. Der Vorteil: Die Schwingungstische werden somit deutlich flacher und kostengünstiger. In Praxistests konnten die Wissenschaftler bereits zeigen, dass ihr System funktioniert. Der Tisch dämpft störende Schwingungen ebenso gut wie herkömmliche Schwingungstische.

"Bei herkömmlichen Isolationsplattformen werden separate Aktoren und Sensoren in der Lagerung untergebracht, die auch einzeln funktionieren. Wir hingegen vereinen diese Funktionselemente mit der Lagerung. Wir verwenden also keine kompletten Aktoren, sondern Bauteile, die erst im Zusammenspiel funktionieren", erläutert Bartel. "Die verschiedenen Elemente bilden also eine Einheit." So sind beispielsweise der Aktor und die Metallfeder fest miteinander verbunden. Weder der Aktor noch die Metallfeder würden alleine funktionieren – erst gemeinsam können sie ihre Aufgabe im Tisch übernehmen.

"Wir können das System an unterschiedliche Anwendungen anpassen", sagt Bartel. So beispielsweise an kleine und große Massen, die auf dem Tisch stehen. Denn soll ein Elektronenmikroskop darauf ruhen, muss der Tisch anders ausgelegt sein als bei kleinen und leichten Geräten. Vor allem die Geometrie müssen die Forscher anpassen. Dabei ist es nicht damit getan, den Tisch nur eine Nummer kleiner zu fertigen. Denn ändert sich die Geometrie, so wirkt sich dies auch auf die Steifigkeit der Elemente aus. Ebenso müssen Aktoren und Sensoren für die jeweilige Masse ausgelegt sein: Ist diese größer, müssen die Aktoren sehr viel mehr arbeiten, um Schwingungen auszugleichen, als bei leichteren Geräten.

COMPAMED.de; Quelle: Fraunhofer Institut