Mikrobauteile schneller und effizienter fertigen

Foto: Mikrobauteile

Im Gegensatz zu abtragenden Verfahren zeichnet sich das Selektive Laserinduzierte Ätzen (ISLE) durch eine große Materialeffizienz aus.

Quarzglasröhrchen mit einem Durchmesser von einem Millimeter und einer Wandstärke von neun Mikrometern, Lochfelder mit Bohrungsdurchmessern von 50 Mikrometern, Mikrofluidikbauteile für die medizinische Diagnostik mit Kanälen von weniger als 10 Mikrometern Durchmesser: Die Abmessungen von Bauteilen in der Feinmechanik, der Medizin- und der Messtechnik werden zunehmend kleiner bei gleichzeitig steigender Komplexität. Beispielsweise müssen für die Uhrenindustrie sogenannte Uhrensteine präzise gefertigt und anschließend montiert werden.

Derzeit werden diese Mikrobauteile von erfahrenen Fachkräften manuell durch Schleifen und Polieren hergestellt und montiert, was einen hohen Zeitaufwand erfordert. Zudem sind abtragende Verfahren stets mit Materialverlust von typischerweise 80 Prozent verbunden, was je nach Material einen erheblichen Kostenfaktor darstellt. Aufgrund der geringen Größe der Mikrobauteile sind transparente, also „farblose“, Materialien für die manuelle Bearbeitung nicht geeignet, da sie für den Facharbeiter nicht gut genug sichtbar sind. In der Regel greifen Hersteller daher auf Rubin zurück, da dieses Material neben der Materialeigenschaft der großen Härte auch eine gut sichtbare, rötliche Färbung aufweist.

Nun wurde ein Laserfertigungsverfahren entwickelt, mit dem sich der Fertigungsprozess von Mikrobauteilen aus transparenten Materialien zeitlich verkürzen sowie Material und Energie einsparen lässt. Nun haben die Experten das Selektive Laserinduzierte Ätzen (in-volume selective laser etching, ISLE) auf die Herstellung zusammengesetzter und montierter Bauteile übertragen. Damit wird eine Justierung und Montage der einzelnen Komponenten in mikromechanischen Systemen überflüssig. Die Belichtungszeit eines Zahnrades, das bereits auf einer Welle montiert und in einem Gehäuse eingebaut ist, beträgt nur noch rund 15 Minuten.

Der Prozess läuft folgendermaßen ab: Mittels ultrakurz gepulster Laserstrahlung wird ein transparentes Werkstück mit 3D-Auflösung im Volumen genau dort belichtet, wo Material entfernt werden soll. Das Material wird chemisch und physikalisch so verändert, dass es selektiv ätzbar wird. Im anschließenden nasschemischen Ätzprozess wird das belichtete Material entfernt, während das unbelichtete Material vom Ätzprozess nahezu nicht beeinflusst wird. Auf diese Weise lassen sich Mikrokanäle, Formbohrungen, strukturierte Bauteile sowie komplexe, zusammengesetzte, mechanische Komponenten und Systeme herstellen. Das ISLE-Verfahren kann neben Rubin auch für Saphir oder Glas verwendet werden. Es ist reproduzierbar und in der Lage, serienidentische Geometrieanforderungen der Bauteile zu gewährleisten. Dabei bietet das ISLE-Verfahren eine große Geometrie- und Designfreiheit. Formgenauigkeiten kleiner einem Mikrometer sowie Schnittfugen und Bohrungen mit extrem großen Aspektverhältnissen aufgrund des kleinen Fokusvolumens zeichnen das ISLE-Verfahren besonders aus.

COMPAMED.de; Quelle: Fraunhofer-Institut für Lasertechnik ILT