Mechanische Eigenschaften entschlüsselt


Darauf aufbauend entwickelten sie eine Theorie, die es ermöglicht, die Festigkeit und Robustheit von biologischen Nanostrukturen vorherzusagen.

Zum ersten Mal konnten auf atomarer Ebene Deformationsmechanismen von Proteinmaterialien im Cytoskelett der Zelle und in Amyloid-Fasern, wie sie bei Alzheimer vorkommen, erklärt werden. "Das Besondere an biologischen Proteinmaterialien ist, dass sie meist aus sehr 'weichen' Wasserstoffbrückenbindungen aufgebaut sind", erklärt Theodor Ackbarow, Austauschstudent der Uni Stuttgart am MIT. Dennoch erreichen biologische Materialien hohe Festigkeiten, ähnlich derer von Glas oder Stahl.

Die Forschungsergebnisse zeigen, dass die Existenz von hierarchischen Materialstrukturen von Nano zu Makro der Schlüssel zum Erreichen dieser außergewöhnlichen Eigenschaften ist. Die Strukturen erlauben es, scheinbar widersprüchliche Materialeigenschaften wie Festigkeit und Robustheit oder Selbstheilung und Selbstadaptation miteinander zu vereinen und zudem die schwachen chemischen Bindungen zu verstärken. Dadurch ist es möglich, trotz schwacher chemischer Bindungen belastbare, sich ständig an die Umgebung anpassende Materialien zu erzeugen.

Die Forscher haben beobachtet, dass aufgrund der hierarchischen Struktur je nach Verformungsgeschwindigkeit verschiedene Deformations- und Bruchmechanismen auftreten. Wenn sich zum Beispiel eine Zelle aktiv verformt, treten Mechanismen auf, die dafür sorgen, dass das Gewebe weich bleibt und somit die Verformungen unter minimalem Energieauf-wand möglich sind. Wirkt hingegen eine Schocklast auf das Gewebe ein, werden andere Bruchmechanismen aktiviert, die zu einer lokalen Verfestigung des Materials führen.

Aufbauend auf diesen Erkenntnissen konnten die Forscher erstmals ein Festigkeitsmodell entwickeln, das es ermöglicht, ausschließlich aufgrund der Eigenschaften der chemischen Verbindungen und der Geometrie der Moleküle die mechanischen Eigenschaften von Proteinstrukturen vorherzusagen. Das ist der erste Schritt, um biologische Materialien zu entwickeln, die auch bei moderaten Temperaturen herzustellen sind.

COMPAMED.de; Quelle: Universität Stuttgart