Laserschweißen im richtigen Licht

Foto: Kunststoffnaht

Es geht schnell, produziert kaum Abfälle und ist hoch präzise: Binnen weniger Sekunden schweißt ein Laserstrahl Gehäuse und Tachoabdeckung zusammen – ganz ohne Schrauben, Klammern oder Kleber. Das Ergebnis ist eine perfekte Schweißnaht, die mit bloßem Auge kaum sichtbar ist. Keine Funken sprühen während des Schweißens, Partikel fliegen nicht durch die Luft. Und: Die entstandene Hitze beschränkt sich auf einen minimalen Bereich. Das schont das Material.

Dennoch stößt die Technik an Grenzen; vor allem bei der Wahl von zwei Kunststoff-Komponenten lässt sie keine große Freiheit. Denn bisher musste der obere Fügepartner transparent sein, damit der Laser ungehindert hindurchstrahlen kann, während der untere Schweißpartner die Strahlung absorbiert. Dazu sind meist Rußpartikel notwendig, mit denen der Kunststoff versetzt ist. Diese nehmen die Energie des Laserstrahls auf und leiten die so erzeugte Schmelzwärme an den oberen Partner weiter. „Die Kunststoff-Kombination der Wahl war bisher meistens transparent und schwarz. Doch es gibt viele Anwendungen, wie etwa in der Medizintechnik, wo eine Kombination aus zwei transparenten Kunststoffen gefragt ist“, erklärt Doktor Alexander Olowinsky, Projektleiter am Fraunhofer-Institut für Lasertechnik ILT in Aachen. Dem Forscher und seinem Team ist es gelungen, die bisherigen Grenzen des Laserschweißens aufzuheben.

„Zwar stellt die Industrie inzwischen auch Infrarot-Absorber her, die annähernd transparent sind, doch diese sind nicht nur sehr teuer, sondern grün-gelblich verfärbt“, führt Olowinsky aus. „Unser Ziel war es deshalb, einen Weg zu finden, bei dem man ganz ohne Absorbermaterialien auskommt.“ Dafür analysierten die Forscher die Absorptionsspektren von verschiedenen transparenten Polymeren und suchten nach jenen Wellenlängenbereichen, bei denen der Kunststoff Laserstrahlung aufnimmt. Dann testeten und optimierten sie die passenden Lasersysteme, die das Licht in der entsprechenden Wellenlänge emittieren.

Damit die Energie des Lichts aber in die Fügeebene trifft, also dort, wo die Grenze zwischen beiden transparenten Kunststoffen verläuft, haben die Experten spezielle Linsensysteme entwickelt. Diese fokussieren den Lichtstrahl so, dass in der Strahltaille – der Stelle, an welcher der Durchmesser am kleinsten ist – die höchste Energiedichte und somit die höchste Temperatur genau in der Fügeebene herrscht.

Die besten Ergebnisse erzielten die Forscher bei einer Wellenlänge von etwa 1700 Nanometern. „In diesem Bereich war die Schweißeffizienz am besten“, so Olowinsky.
Besonders die Medizintechnik und die Bioanalytik profitieren von dem neuen Schweißverfahren.


COMPAMED.de; Quelle: Fraunhofer-Gesellschaft