Laser für minimalinvasive Operationen

Foto: Grafik

Die Idee zu dem Laser geht auf ein Experiment aus dem Jahr 1999 zurück: An der Vanderbilt University in Nashville (TN), USA, entfernten Wissenschaftler einer Patientin einen Gehirntumor mit einem Freie-Elektronen-Laser bei einer Wellenlänge von 6.45 Mikrometern. Diese Wellenlänge im mittleren infraroten Spektralbereich war zuvor in vielen vorläufigen Versuchen mit weichem Gewebe als die geeignetste für solche Operationen identifiziert worden.

Dass die Methode dennoch nicht in die Operationssäle Einzug hielt, hat einen einfachen Grund: Freie-Elektronen-Laser sind enorm große und teure Beschleuniger-basierte Strahlungsquellen, die in keine Klinik passen würden. Nur mit ihnen ließ sich aber bislang diese Wellenlänge erzeugen, weil sie in einem breiten Spektralbereich „frei durchstimmbar“ sind, das heißt es lässt sich fast jede beliebige Wellenlänge einstellen. Festkörper- oder Gaslaser hingegen haben eine genau definierte Wellenlänge, welche vom optischen Verstärkermedium des Lasers abhängt. In der Laserchirurgie kommen derzeit Wellenlängen von etwa 2, 2.8 oder 10.6 Mikrometern zum Einsatz.

„Kompakte und zuverlässige Festkörperlaser für diese Wellenlänge im mittleren infraroten Bereich gab es bislang überhaupt nicht“, sagt Doktor Valentin Petrov vom MBI, Koordinator des Konsortiums. Der neue Laser generiert nun kurze Lichtimpulse bei genau 6.45 Mikrometern und das bei einer Wiederholrate von 100 bis 200 Hz, was die geplante mittlere Leistung von mehr als 1 Watt gewährleistet. Der Laser verursacht im Gewebe weniger Schaden als herkömmliche Laser, weil die Energie des Laserlichts sowohl durch Wasser als auch von nichtwässrigen Komponenten (Proteine) absorbiert wird. Die Eindringtiefe beträgt bei dieser Wellenlänge wenige Mikrometer, was etwa der Größe von Zellen entspricht - mit den bislang in der Chirurgie verwendeten Lasern waren solch präzise Schnitte nicht möglich.

2008 war das Projekt MIRSURG (Mid-Infrared Solid-State Laser Systems for Minimally Invasive Surgery) mit dem Ziel gestartet, die Lücke bei dioden-gepumpten Festkörperlasern im mittleren infraroten Spektralbereich um 6.45 Mikrometer zu schließen. Das Projektteam präsentierte nun einen ziemlich kompakten „all-solid-state“ Prototypen, der auf eine Tischplatte passt. Die gewünschte Wellenlänge erzeugten die Forscher durch nichtlineare Frequenzkonversion. Dabei wird ein Laserstrahl bei etwa 2 Mikrometern Wellenlänge über nichtlineare optische Kristalle ins mittlere Infrarot umgewandelt.

COMPAMED.de; Quelle: Institut für Forschungsverbund Berlin