Ioneneinfang mit Laserlicht


Fallen für einzelne Teilchen spielen seit mehreren Jahrzehnten eine Schlüsselrolle bei hochpräzisen Messungen an Quantensystemen, da sie eine vollständige Steuerung und Kontrolle aller experimentellen Parameter erlauben. Bisher mussten sich die Wissenschaftler dabei zwischen zwei alternativen Strategien entscheiden: entweder wählten sie als Quantenbausteine elektrisch geladene Atome, das heißt Ionen, die sie durch starke Radiofrequenzfelder einfingen, oder sie nutzten neutrale Atome, die sie mit geeigneten Lichtfeldern festhielten.

Doktor Tobias Schätz, Leiter der Emmy-Noether-Forschungsgruppe Quantensimulationen am Max-Planck-Institut für Quantenoptik, und sein Team haben nun gezeigt, dass sich beide Speichermethoden und beide Teilchensorten kombinieren lassen: erstmals gelang es ihnen, Ionen in einer optischen Dipolfalle zu speichern. Das Experiment zeigt neue Perspektiven auf, Festkörpereigenschaften mit Hilfe von kontrollierbaren Quantensystemen experimentell zu simulieren. Doch könnten auch ganz neue Möglichkeiten für Experimente in der Ultrakalten Chemie entstehen.

Experimentelle Quantensimulationen basieren auf dem Prinzip, ein komplexes Vielteilchensystem (um Beispiel einen metallischen Festkörper), in dem die Quanteneigenschaften unverstanden, schlecht zugänglich und nicht steuerbar sind, durch ein anderes System zu modellieren, an dem sich die analogen Fragestellungen unter exakt definierten Bedingungen untersuchen lassen.

Für die Realisierung der entsprechenden Modellsysteme gibt es verschiedene Möglichkeiten. Für besonders viel versprechend halten Wissenschaftler Systeme aus Ionen, die in Radiofrequenzfallen festgehalten werden, sowie aus neutralen Atomen, die in Lichtfeldern gespeichert werden. Ein Spezialfall sind hier die sogenannten optischen Gitter, die durch Überlagerung von Laserwellen gebildet werden. Dabei entsteht eine periodische Anordnung von hellen und dunklen Gebieten. Diese „Lichtkristalle“ haben sich seit fast drei Jahrzehnten als Werkzeug für die Manipulation kalter neutraler Atome bewährt.

Die Wahl der Teilchensorte hängt dabei entscheidend von der Fragestellung ab. Die Forschungsgruppe von Schätz befasst sich unter anderem mit den Quanteneigenschaften magnetischer Stoffe. Magnetismus in Festkörpern ist darauf zurückzuführen, dass die einzelnen Atome einen Eigendrehimpuls, einen sogenannten Spin besitzen. Die Wechselwirkung zwischen je zwei benachbarten Spins führt, in Abhängigkeit von äußeren Randbedingungen, zu ihrer parallelen oder antiparallelen Ausrichtung und damit zum Beispiel zu ferromagnetischen beziehungsweise antiferromagnetischen (hier sogar, bei einer ungeraden Anzahl von Spins, zu sogenannten „frustrierten“ ) Zuständen.

Die Erforschung der Quantendynamik dieser Zustände könnte zu einem besseren Verständnis der Hochtemperatur-Supraleitung beitragen. Für die analoge Simulation der Spin-Spin-Wechselwirkung und der aus ihr folgenden Eigenschaften eignen sich Ionen weit besser als neutrale Atome, da die zwischen ihren Ladungen wirkende Coulomb-Kraft um ein Vielfaches stärker ist als die Wechselwirkung zwischen benachbarten Atomen in einem optischen Gitter. Experimentelle Quantensimulationen könnten deshalb mit Ionen in wesentlich kürzerer Zeit als mit neutralen Atomen durchgeführt werden, wodurch der Einfluss externer Störfelder entscheidend reduziert würde.

Aufgrund ihrer elektrischen Ladung lassen sich Ionen auch leicht durch elektromagnetische Felder beeinflussen. Deshalb bedienen sich Wissenschaftler schon seit mehr als 60 Jahren der Methode, Ionen mit Wechselfeldern im Radiofrequenzbereich einzufangen, und mittlerweile erreichen sie hierbei Speicherzeiten von bis zu mehreren Monaten. Experimentelle Quantensimulationen mit einigen Ionen in einer Radiofrequenzfalle lassen sich aber nur schwer zu großen Systemen ausbauen. Warum hat also man nicht schon längst versucht, optische Gitter auch für die Speicherung von Ionen einzusetzen?

„Gegen optische Felder spricht zunächst, dass sie bei weitem nicht so tiefe „Speichertöpfe“ erlauben wie Radiofrequenz-Wechselfelder. Gleichzeitig reagieren Ionen aufgrund ihrer elektrischen Ladung extrem empfindlich auf äußere Störfelder“, erläutert Schätz. „Dies führte zu dem Vorurteil, dass optische Potentiale zu flach und damit ungeeignet seien. Wir konnten aber experimentell zeigen, dass sich auch Ionen effektiv durch die Wechselwirkung mit Licht einfangen lassen.“

COMPAMED.de; Quelle: Max-Planck-Institut für Quantenoptik