Mikroskopie: Hohe Auflösung mit einfachen Mitteln

11.04.2014
Foto: Fluoreszenzaufnahme

Vergleich: links die herkömmliche Methode und rechts hochaufgelöst mit dem neuen Verfahren. Vergrößert: Dornenapparat als Punkt innerhalb eines dendritischen Dornfortsatzes;
© TU Braunschweig

Ein von Wissenschaftlern der TU Braunschweig und der Georg-August-Universität Göttingen entwickeltes Mikroskopieverfahren unterschreitet die traditionellen physikalischen Grenzen der Fluoreszenzmikroskopie um ein Vielfaches.

Das hochauflösende und besonders einfach anzuwendende Verfahren ermöglicht zum Beispiel sehr genaue Einblicke in diejenigen Bestandteile von Nervenzellen, die bei Lern- und Gedächtnisvorgängen eine entscheidende Rolle spielen.

Mit der Fluoreszenzmikroskopie Hilfe werden unter der Anwendung von Farbstoffen bestimmte Zellbestandteile bis zu einer Größe von ca. 300 Nanometern sichtbar gemacht. DNA, Proteine und andere wichtige Schlüsselbestandteile können mit dieser Methode aber nicht aufgelöst werden, da ihre Größe unter der physikalischen Grenze der herkömmlichen Methode liegt. Jedoch sind gerade sie für das Verständnis des Innenlebens einer Zelle wichtig. "Neuartige Verfahren haben diese Grenze zwar schon unterschritten, allerdings benötigen sie dafür oft sehr aufwändige, teure und empfindliche optische Aufbauten oder besondere Verfahren bei der Herstellung der Proben", erläutert Prof. Peter Jomo Walla vom Institut für Physikalische und Theoretische Chemie der Technischen Universität Braunschweig.

Ein wichtiger Vorteil des neuen Verfahrens besteht darin, dass es prinzipiell auf jede Farbstoffmarkierung angewendet werden kann, die Mediziner oder Biologen routinemäßig in ihren Laboren einsetzen und somit keine spezielle Behandlung der Proben für eine Hochauflösung erforderlich ist. Mit dem Verfahren ist es dem Team von Walla zusammen mit der Arbeitsgruppe von Prof. Axel Munk am Felix-Bernstein-Institut für Mathematische Statistik in den Biowissenschaften der Universität Göttingen gelungen, Auflösungen von besser als 50 Nanometer zu erreichen.

Auf der Grundlage herkömmlicher Fluoreszenzmikroskopie machten es sich die Braunschweiger zunutze, dass sich die meisten Farbstoffe zufällig und unterschiedlich räumlich orientieren. Dafür entwickelte das Team um Walla einen neuartigen aber einfachen optischen Trick, um Farbstoffe verschiedener Orientierung ganz besonders genau zu unterscheiden. Dies ermöglicht es, Farbstoffe oder Farbstoffgruppen an verschiedenen Stellen der Struktur jeweils anhand ihrer Orientierung zu selektieren und genauer zu lokalisieren. Diese mit höherer Auflösung lokalisierten Bereiche verschiedener Orientierung müssen dann am Schluss wieder zu einem hochaufgelösten Gesamtbild zusammengesetzt werden.

Ein wichtiger Durchbruch gelang dabei mit Hilfe eines von den Göttinger Mathematikern Munk und Dr. Timo Aspelmeier speziell hierfür entwickelten statistischen Rekonstruktionsverfahrens. Dabei müsse das Bild von vielen Störungen bereinigt werden, erläutert Munk: „Das ist gewissermaßen wie ein kompliziertes Puzzle, bei dem jemand auch noch Teile in den Karton geworfen hat, die gar nicht dazu gehören.“ Dabei machten sich die Mathematiker eine in den letzten Jahren entwickelte Theorie zunutze – die sogenannte sparse statistische Methode.

Vom ersten Konzept bis hin zum funktionierenden Mikroskop sei es ein langer Weg gewesen, der sich aber mehr als gelohnt hätte, erklären die beiden Wissenschaftler. Die Möglichkeiten des neuen Mikroskopieverfahrens konnten die Forscherinnen und Forscher zusammen mit Prof. Martin Korte und seinem Team vom Institut für Zoologie der TU Braunschweig testen. Dabei gelang es ihnen, die Membran von Nervenzellen und ihren sogenannten dendritischen Dornfortsätzen, die für die Kommunikation zwischen Nervenzellen zuständig sind, mit sehr hoher Auflösung darzustellen. Da diese allerdings oft Strukturen von unter 100 Nanometern aufweisen, können wichtige Details mit herkömmlichen Fluoreszenzmethoden nur schwer aufgelöst werden. Mit dem neuen Verfahren konnte nun sogar der sogenannte Dornenapparat hochauflösend sichtbar gemacht werden, der in Nervenzellen unter anderem bei Lern- und Gedächtnisvorgängen eine wichtige Rolle spielt.

COMPAMED.de; Quelle: TU Braunschweig