Hüpfende Protonen

Foto: Schnappschuss einer Initio Molecular Simulation

Wie kann man das Verhalten von Protonen und Aminosäuren im Computer simulieren, wie kann man Experimente darstellen, bei denen sich das Verhalten bei mehr oder weniger Zufuhr von Wasser untersuchen lässt? Die Antwort auf diese Frage scheint im Zeitalter von Hochleistungsrechnern banal. In der Realität aber zeigt sich, dass diese Aufgabe ohne neue mathematische Algorithmen bis heute fast nicht lösbar ist. Zu schnell, zu „unberechenbar“ verhalten sich diese Protonen.

Im Projekt „Modellierung und Optimierung funktionaler Moleküle“ des DFG-Forschungszentrum MATHEON arbeitet Schmidt an diesem Problem. Er untersucht in der Computersimulation die Rolle des Wassers als Lösungsmittel, wenn es schrittweise zu Aminosäuren oder Peptiden hinzugefügt wird. Vor allem will er den Protonentransfer zwischen zwei Endgruppen und den Protonentransfer zwischen geeigneten Seitenketten erforschen.

Ein Zwitterion ist ein Molekül mit zwei oder mehreren funktionalen Gruppen, von denen eine Gruppe positiv und eine andere negativ geladen ist. Das Molekül ist somit insgesamt elektrisch neutral. Eine Aminosäure ist ein zunächst elektrisch neutrales Molekül. Werden Aminosäuren jedoch in Wasser gelöst, beginnen die Wasser-Protonen zu hüpfen und führen zur Ausbildung eines negativ und eines positiv geladenen Endes der Säure. Dabei sind die Protonen ständig in Bewegung und gehen laufend neue Verbindungen ein. Durch das Hüpfen der Protonen entlang benachbarter Moleküle können Ladungen auch über Entfernungen auf der Nanometer-Skala in sogenannten Wasserbrücken oder ”Wasserdrähten“ transportiert werden. All das passiert in sehr schnellen Zeitskalen.

Schmidt möchte die Mechanismen des Protonentransfers auf mikroskopischer Basis verstehen. Dabei beschränkt er sich auf Aminosäuren und kleine Peptidketten: „Obwohl die weitaus meisten biologischen Prozesse in wässriger Lösung auftreten, beginnen unsere Untersuchungen bei isolierten Aminosäuren und Peptiden, um so die intra- von den intermolekularen Prozessen trennen zu können. Anschließend werden in unseren Simulationen nach und nach einzelne Wassermoleküle hinzugefügt. Damit wollen wir den Einfluss des Lösungsmittels kontrolliert untersuchen.“ Ein ehrgeiziges Vorhaben, denn solche Untersuchungen sind nur in der Computersimulation und gar nicht oder nur schwer als Experiment durchzuführen.

Dabei will der Wissenschaftler zum Beispiel klären, wie viele Wassermoleküle erforderlich sind, um Aminosäuren oder Peptide von ihrer neutralen in ihre zwitterionische Form zu überführen. Untersuchen will er auch, was mit einer Salzbrücke passiert, wenn Wassermoleküle hinzugefügt werden. „Darüber hinaus ist es interessant, diese Prozesse in ihrer Zeitabhängigkeit zu simulieren, um so auch die Zeitskalen der untersuchten Prozesse studieren zu können. Wesentliche Fragen dabei sind, wie schnell Protonen von geeigneten Seitenketten abgelöst beziehungsweise an diese angelagert werden können oder auf welcher Zeitskala Protonen zwischen Protein und Wasser übergeben werden und wie schnell der Transport von Protonen entlang von Wasserbücken ist,“ erklärt Burkhard Schmidt.

Bei seinen Untersuchungen will Schmidt Verfahren anwenden, bei denen in jedem Zeitschritt der Simulationen die Energien beziehungsweise Kräfte aus der Elektronenstruktur berechnet werden. Das unterscheidet seine Arbeit von „herkömmlichen“ Computersimulationen.


COMPAMED.de; Quelle: DFG Forschungszentrum MATHEON Mathematik für Schlüsseltechnologien