Foto: Eingespannter Knochen
Der eingespannte Knochen wird
zum Schwingen gebracht; © IWU

Bisher untersuchen Ärzte die Patienten mit Computertomographie und ermitteln aus den Aufnahmen die grobe Dichte der Knochen. Über verschiedene Annahmen errechnen die Mediziner, wie fest die Knochen an welchen Stellen sind. Das Problem: Als Grundlage für die Simulationen gibt es zwar verschiedene Theorien, die Ergebnisse weichen allerdings erheblich von der Realität ab. Die geschädigten Knochen sind meist anders beschaffen, als die Simulation glauben macht.

Dies wollen Forscher des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik (IWU) in Dresden zusammen mit Kollegen vom Labor für Biomechanik der Universität Leipzig nun ändern: Sie entwickeln ein Modell, mit dem die Ärzte aus den computertomographischen Aufnahmen die Dichte und Elastizität des Knochens zuverlässig und realistisch berechnen können. Dazu übertragen die Forscher Methoden, mit denen üblicherweise Bauteile geprüft werden, auf menschliche Hüftknochen: Sie bringen den Knochen zum Schwingen.

Bei Patienten ist diese Art der Untersuchung nicht möglich: Der Knochen muss in eine Apparatur eingespannt werden. "Über die Art der Schwingungen können wir auf lokale Eigenschaften des Knochens schließen - etwa die Dichte und Elastizität", erklärt Martin Quickert, Gruppenleiter am IWU. Diese Ergebnisse vergleichen die Forscher mit computertomographischen Aufnahmen des Knochens und beschreiben die Zusammenhänge über ein mathematisches Modell. Dieses soll künftig ermöglichen, die Knochenfestigkeit direkt aus den computertomographischen Aufnahmen zu ermitteln.

Erste Untersuchungen an präparierten und so haltbar gemachten Knochen haben die Wissenschaftler bereits gemacht. In etwa zwei Jahren, hoffen die Forscher, erhalten die Ärzte aus Computertomographie-Aufnahmen genauere und realistischere Daten, wie die Beckenknochen des Patienten beschaffen sind, um die Prothese optimal zu verankern.

COMPAMED.de; Quelle: Fraunhofer-Gesellschaft