Röntgenmikroskop: Fluktuationen sichtbar gemacht

08.02.2013

Foto: Schema des experimentellen Aufbaus

Röntgenstrahlen werden gebündelt und treffen auf ein Testobjekt, das mit Nanometer-Präzision durch den Strahl bewegt wird; © PSI/TUM

Hochauflösende Bilder von kleinen Strukturen wie einzelnen Zellen sind nur möglich, wenn sowohl Mikroskop als auch das Untersuchungsobjekt extrem stabil sind. Forscher zeigten nun, wie man diese Bedingungen lockern kann, ohne die Bildqualität zu beeinträchtigen.

Auch hochdynamische Systeme, wie zum Beispiel magnetische Fluktuationen, wie sie die Lebensdauer von Daten auf Festplatten einschränken, können untersucht werden.

Sowohl in den Lebens- als auch in den Materialwissenschaften bietet Mikroskopie mit Röntgenstrahlen einzigartige Einblicke. Um jedoch Nanostrukturen wie den Aufbau biologischer Zellen, die poröse Struktur von Zement oder Speicherfelder von magnetischen Datenträgern abzubilden, müssen Röntgenmikroskope möglichst vibrationsarm sein. Zusätzlich müssen Röntgenfilter aus der ankommenden Röntgenstrahlung den Anteil mit den richtigen Eigenschaften auswählen – zum Beispiel der richtigen Wellenlänge. „Das Röntgenlicht, das wir verwenden“, erklärt Andreas Menzel, Wissenschaftler am Paul Scherrer Institut, „muss selbst sehr gut charakterisiert sein. Ansonsten können wir nicht garantieren, dass unsere Bilder genau das wiedergeben, was wir untersuchen.“

Menzel und Pierre Thibault von der Technischen Universität München haben nun eine Analysemethode entwickelt, die trotz Vibrationen oder Fluktuationen zuverlässige Bilder produziert. Die Methode basiert auf einer Technik namens „Ptychographie“, die in den 1960er Jahren für die Elektronenmikroskopie erfunden wurde. Sie wurde in den letzten Jahren weiterentwickelt und wird inzwischen auch für hochauflösende Mikroskopie sowohl mit sichtbarem als auch mit Röntgenlicht angewendet. Die neuen Ergebnisse ermöglichen es nun beispielsweise, in einem Bild Effekte voneinander zu unterscheiden, die von Lichtanteilen mit verschiedenen Wellenlängen stammen. „Neben dem Einsatz in bildgebenden Verfahren“, erläutert Pierre Thibault, „hat unsere Analyse eine grundlegende Verwandtschaft zu anderen Fachbereichen offenbart. Mikroskopie und Wissenschaftsdisziplinen, wie zum Beispiel Quanteninformatik, die bisher als denkbar unabhängig galten, können voneinander profitieren.”

Das wahrscheinlich bedeutsamste Ergebnis der Arbeit ist, dass nun eine ganze Klasse von Objekten abgebildet werden kann, die man bisher nicht gut hat untersuchen können. „Wir können nicht nur Vibrationen im Mikroskop kompensieren“, sagt Menzel, „Auch wenn sie viel zu schnell sind, als dass wir sie mit einzelnen Momentaufnahmen festhalten könnten, können wir Fluktuationen der Probe selber charakterisieren.“ Eine mögliche Anwendung besteht darin, die wechselnde Magnetisierung einzelner Bits in magnetischen Speichermedien mit hoher Speicherdichte zu untersuchen.

„Um uns zu vergewissern, dass die Bilder, die wir produzierten, tatsächlich die Proben und ihre Dynamik genau wiedergaben“, so Pierre Thibault, „führten wir zudem Computersimulationen durch. Sie bestätigten, dass sowohl Effekte des Instruments als auch der Proben selbst, wie Ströme, Schaltvorgänge oder bestimmte Quantenzustände, charakterisiert werden können.“

COMPAMED.de; Quelle: Paul Scherrer Institut (PSI)