Fast normale Bewegung durch Mikroelektronik

Wissenschaftler der Technischen Universität Berlin (TUB) und des Fraunhofer-Instituts entwickeln derzeit ein solches "Interface". Es ließe sich zwar auch direkt verdrahten, erklärt Physiker Matthias Klein. Dann aber würden Drähte von den Nerven aus dem Inneren des Armstumpfes oder sogar aus dem Inneren des Gehirns an die Oberfläche des Gewebes zu einer Art Stecker führen. Das würde jedoch ein erhebliches Infektionsrisiko bedeuten. Daher entwickeln die Forscher gemeinsam mit der University of Utah eine drahtlose Schnittstelle, die in Fachkreisen "Array" genannt wird.

Die hundert nadelfeinen Spitzen an der Unterseite werden in das Gewebe gedrückt. Sendet nun eine Nervenzelle ein Signal in Form eines winzigen elektrischen Stromimpulses, können die Nadelspitzen diesen Stromfluss aufnehmen. Dazu benötigen sie einen direkten Kontakt zum sendenden Nerv im Gehirn oder am Nervenstrang.

Der Rest ist reine Mikroelektronik: Die Spitzen leiten das Signal an einen winzigen Chip weiter. Dieser verstärkt das schwache Signal und filtert gleichzeitig störendes Rauschen heraus. Ganz oben auf dem gerade einmal drei Millimeter hohen Bauteil gibt es dann noch eine winzige Antenne, die das Signal nach außen sendet. Die Forscher versorgen das „Interface“ drahtlos mit Energie, indem sie außerhalb des Körpers mit einer Spule ein kleines elektrisches Feld anlegen. Nicht viel anders liest ein Scanner die Informationen auf dem Minichip, der in elektronisch lesbare Reisepässe eingebaut wird.

Steckt so ein Interface nun im Gewebe, stellt sich der Mensch zum Beispiel vor, er würde gerade seine Hand zur Faust ballen. Das Nervensignal wird nun zu einer Software weiter geleitet, die nach einigen Malen "Faust ballen" lernt, welches Signal dabei durch die Nervenbahnen saust. Kommt nun im Alltag das Signal "Faust ballen", gibt die Software den Befehl in einer "Sprache" weiter, die der Elektronik in der Prothese geläufig ist. Langsam lernt der Mensch dann, die Prothese fast so wie eine verlorene Hand zu benutzen.

Das Ganze würde auch umgekehrt funktionieren, erklärt Klein: "Sensoren in der Prothese können Signale so auch über das Interface an das Nervengewebe im Gehirn weiter leiten." Mit Hilfe des "Arrays" könnten Prothesen in Zukunft also auch Sinneseindrücke an den Körper liefern.

COMPAMED.de; Quelle: Technische Universität Berlin