Erfolg in Bananenform

Foto: Textur eines Bananen-Flüssigkristalls

Eine neue Publikation auf dem Gebiet der Flüssigkristalle von Professor Carsten Tschierske vom Institut für Chemie gibt einen Überblick über die neuesten Entwicklungen auf dem Gebiet der so genannten bananenförmigen Flüssigkristalle.

Bananenförmige Flüssigkristalle wurden 1996 von einer japanischen Arbeitsgruppe entdeckt und haben ihren Namen von der gebogenen Gestalt der Moleküle. "Dieses Arbeitsgebiet ist gegenwärtig einer der innovativsten Forschungsschwerpunkte auf dem Gebiet der supramolekularen Chemie weicher Materie", erklärt Professor Tschierske.

Wie alle Flüssigkristalle kombinieren auch die bananenförmigen richtungsabhängige physikalische Eigenschaften, wie sie für Kristalle typisch sind, mit der Beweglichkeit von Flüssigkeiten. "Dies ist nicht nur die Voraussetzung für deren Anwendung in flachen Flüssigkristall-Displays, welche man heute in allen Laptop-Computern und den meisten mobilen Telekommunikationssystemen findet", sagt Tschierske. "Flüssigkristalle sind auch wichtig für zukünftige Technologien. So forscht man beispielsweise an der Möglichkeit, mit halbleitenden Flüssigkristall-Molekülen flexible Transistoren, Schaltkreise und Solarzellen in Selbstorganisationsprozessen herzustellen."

Bananenförmige Flüssigkristalle besitzen im Vergleich zu anderen Flüssigkristallen besondere Eigenschaften. "Eine solche Eigenschaft ist die Ferroelektrizität, die zum Beispiel in schnellen elektrooptischen Schaltern und für die nichtlineare Optik genutzt werden kann", führt Tschierske aus. "Eine andere besondere Eigenschaft ist die inhärente Chiralität, die Händigkeit, einiger Organisationsformen. Sie ist symmetriebedingt und kann bei diesen Systemen durch Umorientierung der Moleküle in elektrischen Feldern geschaltet werden. In unserem Arbeitskreis werden die grundlegenden Zusammenhänge zwischen der Molekülstruktur, der Fähigkeit zur Selbstorganisation in definierten Nanostrukturen und den daraus resultierenden Eigenschaften erforscht." Insbesondere führte die Kombination der Bananenmoleküle mit siliziumhaltigen Gruppen zu neuen Organisationsformen dieser Materialien.

COMPAMED.de; Quelle: Martin-Luther-Universität Halle-Wittenberg