Entschichten mit Strahlverfahren

18/05/2016

Der präzise, selektive Abtrag einer Schicht von einem Substrat spielt eine wesentliche Rolle in einer Vielzahl von industriellen Produktionsprozessen. Beispielhaft seien hier die Herstellung von Präzisionswiderständen, die Sensorfertigung oder die Displayproduktion genannt.

Grafik: Mikrostrukturen

Fertigung funktionaler Mikrostrukturen durch präzises Elektronenstrahl-Entschichten; © Fraunhofer FEP

Eine typische Aufgabe besteht darin, elektrische Funktionsschichten auf Kunststoff-, Keramik- oder Glassubstraten im Mikrometermaßstab zu strukturieren und so die gewünschten Eigenschaften gezielt einzustellen: der präzise Abgleich von elektrischen Widerständen, die Einstellung von Sensorgrößen sowie die Definition kleinster Funktionseinheiten. Wichtig ist dabei der möglichst rückstandfreie Abtrag der Schicht bei einer gleichzeitig minimalen thermischen und mechanischen Belastung des Trägersubstrates, was insbesondere bei Kunststoffen eine große Herausforderung darstellt.

Strahlwerkzeuge bieten hier entscheidende Vorteile, da sie die geforderte Genauigkeit bei gleichzeitiger Berührungslosigkeit der Bearbeitung ermöglichen. Ein in vielen Anwendungsfeldern etabliertes Werkzeug ist der Laser, der die zu entfernenden Schichtbereiche durch einen intensiven, gepulsten Energieeintrag absprengt bzw. ablatiert.

Die Wissenschaftler am Fraunhofer FEP beschäftigen sich seit vielen Jahrzehnten mit Design und Herstellung entsprechender Strahlquellen und entwickeln zusammen mit Kunden angepasste Lösungen für spezifische Bearbeitungsaufgaben.

Spezielle Eigenschaften eröffnen der Elektronenstrahltechnologie beim Schichtabtrag einige wichtige Vorteile gegenüber anderen Verfahren: Im Unterschied zum Laser, dessen Energie insbesondere bei metallischen Schichten bereits an der Oberfläche absorbiert wird, erfolgt die Absorption beim Elektronenstrahl im Volumen der Schicht, wobei die Eindringtiefe entsprechend der vorhandenen Schichtdicken exakt eingestellt werden kann. Das bestrahlte Volumen wird so direkt ohne den Umweg über Wärmeleitungsprozesse erhitzt und schmelzflüssig aus der Bearbeitungsspur entfernt. Dabei unterscheidet der Elektronenstrahl nicht zwischen optisch transparenten und absorbierenden Schichten, sodass für beide Materialtypen ein und dieselbe Strahlquelle Verwendung finden kann. Durch die beschriebene Tiefenselektivität und durch die Möglichkeit einer sehr schnellen Führung des kontinuierlichen Strahls kann die thermische Belastung der Substrate gering gehalten werden, wodurch auch ein Einsatz an flexiblen Kunststoffsubstraten möglich wird. Bei gleichem Arbeitsabstand kann der Elektronenstrahl in der Mikrobearbeitung ca. 10- bis 15-mal schneller abgelenkt werden als ein Laserstrahl.

"Der Durchmesser des Elektronenstrahls kann entsprechend der Anwendung angepasst werden, was die Einsatzmöglichkeiten nochmals deutlich erweitert. So sind sogar Durchmesser bis in den Nanometerbereich möglich und werden insbesondere für den hochpräzisen Schichtabtrag mittels lokaler, elektronenstrahl-induzierter Gasphasenätzung eingesetzt", erklärt Benjamin Graffel, Wissenschaftler in der Abteilung Elektronenstrahlprozesse am Fraunhofer FEP. "Genutzt wird dies z. B. bereits bei der Reparatur von Lithographiemasken für die Mikroelektronik."

Als größter Nachteil der Elektronenstrahltechnik wird häufig die Notwendigkeit von Vakuumtechnik genannt. Jedoch schafft gerade das Vakuum wichtige Voraussetzungen für den präzisen Abtrag dünner Schichten: das Fehlen von Luft verhindert bei der thermischen Bearbeitung die Oxidation angrenzender Bereiche, der Abgleich von Widerständen ist ohne die Anwesenheit von Luftfeuchtigkeit erfahrungsgemäß deutlich genauer und reproduzierbarer und die Verschmutzung des Substrates wird reduziert.

COMPAMED.de; Quelle:  Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Mehr über das Fraunhoher FEP unter: www.fep.fraunhofer.de