Eine molekulare Taschenlampe


In einem neuen Verfahren werden maßgeschneiderte Moleküle mit Leuchtkern zwischen Nanoröhrenelektroden aus Kohlenstoff platziert und elektrisch angesteuert. Als Nachweis der molekularen Elektrolumineszenz dient der spektroskopische Fingerabdruck des Moleküls. Sowohl die Moleküle als auch die Elektroden aus Kohlenstoff-Nanoröhren wurden vom Forscherteam um den Chemiker Professor Marcel Mayor (KIT und UB) eigens für dieses Verfahren entwickelt.

Molekulare Elektronik befasst sich mit dem Ladungstransport durch Moleküle. Langfristiges Ziel ist die Entwicklung molekularer Schaltkreise für leistungsfähige und energieeffiziente Computer. Die aktuelle Arbeit weist nach, dass einzelne, fest verdrahtete Moleküle elektrisch zum Leuchten angeregt werden können – diese für die Grundlagenforschung wichtige Erkenntnis erweitert die Vision der molekularen Elektronik um eine optoelektronische Komponente.

Für die Forscher bestand die besondere Herausforderung darin, sogenannte bottom-up Strukturen (Moleküle) in top-down Strukturen (Elektroden) zu integrieren und dabei die kritischen Abmessungen zu beherrschen. Um Ladungstransport und Lichtemission zu ermöglichen, müssen die elektronischen und optischen Eigenschaften von Molekül und Nanoröhrenelektroden aufeinander abgestimmt sein.

Die synthetisierten 7.5nm langen stäbchenförmigen Moleküle mit lichtaktivem Kern und die aufbereiteten Kohlenstoff-Nanoröhren erfüllten diese Anforderungen. Durch kontrollierte strominduzierte Oxidation gelang es Nanoröhren-Elektroden mit winziger Lücke (<10nm) zu erzeugen. Die in Lösung befindlichen Moleküle werden dann mittels Dielektrophorese, einer Feld-induzierten Form der Selbstorganisation, zwischen die Nanoröhrenelektroden abgeschieden.

Für die ausreichende Stabilität der Nanoröhren-Molekül-Nanoröhren Kontakte sorgen spezielle Ankergruppen an den Molekülenden. Wird an einen solchen Kontakt eine Spannung von einigen Volt angelegt, leuchtet das Molekül. Mithilfe eines empfindlichen Mikroskopaufbaus konnten die Forscher dieses Licht detektieren und nachweisen, dass es aus dem Kern des Moleküls emittiert wird.


COMPAMED.de; Quelle: Karlsruher Institut für Technologie